THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Методы исследования лекарственных веществ подразделяются на:

1. физические,

2. химические,

3. физико-химические,

4. биологические.

Физические методы анализа предусматривают изучение физических свойств вещества, не прибегая к химическим реакциям. К ним относятся: определение растворимости, прозрачности или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвердевания, кипения.

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.). Для целей идентификации лекарственных веществ используют только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. К химическим методам исследования относятся также весовые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический анализ вошли такие химические методы исследования, как титрование в неводных средах, комплексометрия. Качественный и количественный анализ органических лекарственных веществ, как правило, проводят по характеру функциональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (рефрактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро - химические (потенциометрический и полярографический методы), хроматографические методы.

Биологическое это исследование на животных (лягушках, голубей, кошек). Определяются в ЕД. Подвергаются: ЛРС, содержащие сердечные гликозиды, ЛС, содержащие гормоны, ферменты, витамины, антибиотики.

Оформление экстемпоральные ЛП, ВАЗ, ВАФ осуществляют согласно приказу МЗ РФ № 376 и методические указания о единым оформление.

Этикетки для оформления лекарств, приготовляемых индивидуально и в порядке внутриаптечной заготовки и фасовки, в зависимости от способа их применения, подразделяются на:

ü этикетки для лекарств внутреннего употребления с надписью "Внутреннее", "Внутреннее детское";

ü этикетки для лекарств наружного применения с надписью "Наружное";

ü этикетки на лекарства для парентерального введения с надписью "Для инъекций";

ü этикетки на глазные лекарства с надписью "Глазные капли", "Глазная мазь".

На всех этикетках для оформления лекарств, приготовленных индивидуально и в порядке внутриаптечной заготовки и фасовки, должны быть типографским способом отпечатаны предупредительные надписи, соответствующие каждой лекарственной форме:

ü для микстур - "хранить в прохладном и защищенном от света месте", "перед употреблением взбалтывать";

ü для мазей, глазных мазей и глазных капель - "хранить в прохладном и защищенном от света месте";

ü для капель внутреннего употребления - "хранить в защищенном от света месте";

ü для инъекций - "стерильно".

Все этикетки обязательно должны содержать предупредительную надпись "беречь от детей".

Лекарственная форма указывается от руки.

На всех этикетках для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, должны быть следующие обозначения:

ü эмблема (чаша со змеей);

ü местонахождение аптечного учреждения (предприятия);

ü наименование аптечного учреждения (предприятия);

ü способ применения (внутреннее, наружное, для инъекций) или лекарственной формы (мазь, глазные капли, капли в нос и т.д.);

ü дата приготовления...;

ü годен до...;

ü серия...;

ü "беречь от детей".

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых индивидуально, а также способ применения должны быть напечатаны на русском или местном языке.

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, а также их наименования и необходимые предупредительные надписи рекомендуется печатать типографским способом.

Предупредительные надписи, наклеиваемые на лекарства, имеют следующий текст и сигнальные цвета:

ü "перед употреблением взбалтывать" - на белом фоне зеленый шрифт;

ü "хранить в защищенном от света месте" - на синем фоне белый шрифт;

ü "хранить в прохладном месте" - на голубом фоне белый шрифт;

ü "детское" - на зеленом фоне белый шрифт;

ü "для новорожденных" - на зеленом фоне белый шрифт;

ü "обращаться с осторожностью" - на белом фоне красный шрифт;

ü "сердечное" - на оранжевом фоне белый шрифт;

ü "беречь от огня" - на красном фоне белый шрифт.

Особо ядовитые вещества (<...>, цианид и оксицианид ртути) оформляются одной предупредительной этикеткой черного цвета с обозначением белым шрифтом названия ядовитого лекарственного средства на русском (или местном) языке с изображением скрещенных костей и черепа и надписью "яд" и "обращаться осторожно" в соответствии с действующим приказом.

Оформление лекарств, приготовляемых в аптечных учреждениях (предприятиях) различных форм собственности, в соответствии с представленными Едиными правилами оформления лекарств способствует улучшению культуры лекарственного обеспечения населения, усилению контроля за сроками годности приготовленных лекарств и их ценой, привлечению к ним внимания с целью исключения возможных ошибок при их использовании.

Определение тарифов

В оплату включается:

1. Стоимость ЛС

2. Стоимость вспомогательных материалов

3. Стоимость посуды

4. Издержки

Утверждается тарифы приказом аптеки.

Исходными данными для определения издержек производства служат данные бухгалтерского учета и отчетности аптеки за истекший месяц.

Количество условных производственных единиц отражает полную трудоемкость работы по изготовлению одной единицы лекарственного средства и ИМН.

За одну производственную единицу условно принята работа, выполняемая в течении 10 мин.

За одну единицу изготовления стерильных и жидких лекарственных форм, мазей принимается лекарственное средство, полностью оформленное в соответствии с действующими документами и предназначенное для отпуска.

К стерильным лекарственным формам относятся растворы для инъекционного применения, инфузнные растворы, офтальмологические растворы для орошения, растворы и масла для новорожденных.

К ЖЛФ относятся растворы и капли для внутреннего употребления и наружного применения, масла, очищенная вода.

К мазям относятся пасты, линименты, пластыри жидкие, суспензии, эмульсии.

За одну единицу порошков и суппозиториев условно принята лекарственная форма с расфасовкой на 10 доз.


Похожая информация.


Муниципальное бюджетное образовательное учреждение

«Школа №129»

Автозаводского района г. Нижнего Новгорода

Научное общество учащихся

Анализ лекарственных препаратов.

Выполнила: Тяпкина Виктория

ученица 10 А класса

Научные руководители:

Новик И.Р. доцент кафедры химии и химического образования НГПУ им. К. Минина; к.п.н.;

Сидорова А.В . учитель химии

МБОУ «Школа № 129».

Нижний Новгород

2016 г.

Содержание

Введение……………………………………………………………………….3

Глава 1.Сведения о лекарственных веществах

    1. История применения лекарственных веществ………………………….5

      Классификация лекарственных препаратов…………………………….8

      Состав и физические свойства лекарственных веществ……………….11

      Физиологические и фармакологические свойства лекарственных веществ…………………………………………………………………….16

      Выводы к 1 главе………………………………………………………….19

Глава 2. Исследования качества лекарственных препаратов

2.1. Качество лекарственных препаратов……………………………………21

2.2. Анализ лекарственных препаратов……………………………………...25

Заключение…………………………………………………………………….31

Библиографический список…………………………………………………..32

Введение

«Лекарство твое в тебе самом, но ты этого не чувствуешь, а болезнь твоя из-за тебя же самого, но ты этого не видишь. Думаешь, что ты – это маленькое тело, а ведь в тебе таится (свернут) огромный мир»

Али ибн Абу Талиб

Лекарственное вещество - индивидуальное химическое соединение или биологическое вещество, обладающее лечебными или профилактическими свойствами.

Человечество использует лекарства еще с древних времен. Так в Китае за 3000 лет до н.э. в качестве лекарств использовали вещества растительного, животного происхождения, минералы. В Индии написана медицинская книга «Аюверда»(6-5 век до н. э),в которой даются сведения о лекарственных растениях. Древнегреческий врач Гиппократ (460-377 гг. до н.э.) в своей медицинской практике использовал свыше 230 лекарственных растений.

В эпоху Средневековья многие лекарственные средства были открыты и внедрены в медицинскую практику благодаря алхимии. В 19 веке вследствие общего прогресса естественных наук арсенал лекарственных веществ существенно расширился. Появились лекарственные вещества, полученные путем химического синтеза (хлороформ, фенол, салициловая кислота, ацетилсалициловая кислота и др.).

В 19 веке начинает развиваться химико-фармацевтическая промышленность, обеспечивающая массовый выпуск лекарственных средств. Лекарственные средства - это вещества или смеси веществ, применяемые для профилактики, диагностики, лечения заболеваний, а также для регуляции других состояний. Современные лекарственные средства разрабатываются в фармацевтических лабораториях на основе растительного, минерального и животного сырья, а также продуктов химического синтеза. Лекарственные средства проходят лабораторные клинические испытания и только после этого применяются в медицинской практике.

В настоящее время создается огромное количество лекарственных веществ, но также много и подделки. По данным Всемирной организации здравоохранения (ВОЗ), наибольший процент подделок приходится на антибиотики - 42%. В нашей стране, по информации Минздрава, фальсифицированные антибиотики составляют сегодня 47 % от общего числа препаратов – подделок, гормональные средства-1%,противогрибковые средства, анальгетики и препараты, влияющие на функцию желудочно -кишечного тракта -7%.

Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье, потому для дальнейших исследований мы взяли именно эти вещества.

Цель исследования: познакомиться со свойствами лекарственных препаратов и установить их качество с помощью химического анализа.

Объект исследования: препарат анальгина, аспирина (ацетилсалициловой кислоты), парацетамола.

Предмет исследования: качественный состав препаратов.

Задачи:

    Изучить литературу (научную и медицинскую) с целью установления состава изучаемых лекарственных веществ, их классификации, химических, физических и фармацевтических свойств.

    Подобрать методику, подходящую для установления качества выбранных лекарственных препаратов в аналитической лаборатории.

    Провести исследование качества лекарственных препаратов по выбранной методике качественного анализа.

    Проанализировать результаты, обработать их и оформить работу.

Гипотеза: проведя анализ качества лекарственных препаратов по выбранным методикам можно определить качество подлинности препаратов и сделать необходимые выводы.

Глава 1. Сведения о лекарственных веществах

    1. История применения лекарственных веществ

Учение о лекарствах является одной из самых древних медицинских дисциплин. По-видимому, лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Употребляя в пищу те или иные растения, наблюдая за животными, поедающими растения, человек постепенно знакомился со свойствами растений, в том числе и с их лечебным действием. О том, что первые лекарства были в основном растительного происхождения, мы можем судить по наиболее древним из дошедших до нас образцов письменности. В одном из египетских папирусов (XVII век до н. э.) описывается ряд растительных лекарственных средств; некоторые из них применяются и в настоящее время (например, масло касторовое и др.).

Известно, что в Древней Греции Гиппократ (III век до н. э.) использовал для лечения заболеваний различные лекарственные растения. При этом он рекомендовал пользоваться целыми, необработанными растениями, считая, что только в этом случае они сохраняют свою целебную силу.Позднее медики пришли к выводу, что в лекарственных растениях содержатся действующие начала, которые можно отделить от ненужных, балластных веществ. Во II веке н. э. Римский врач Клавдий Гален широко применял различные извлечения (вытяжки) из лекарственных растений. Для извлечения действующих начал из растений он использовал вина, уксусы. Спиртовые вытяжки из лекарственных растений применяют и в настоящее время. Это настойки и экстракты. В память о Галене настойки и экстракты относят к так называемым галеновым препаратам.

Большое количество лекарственных средств растительного происхождения упоминается в сочинениях крупнейшего таджикского медика эпохи Средневековья Абу Али Ибн-Сины (Авиценны), жившего в XI веке. Некоторые из этих средств используются и в настоящее время: камфора, препараты белены, ревеня, александрийского листа, спорыньи и др. Кроме лекарств растительного происхождения, медики применяли некоторые неорганические лекарственные вещества. Впервые вещества неорганической природы стал широко использовать в медицинской практике Парацельс (XV- XVI век). Он родился и получил образование в Швейцарии, был профессором в Базеле, а затем переселился в Зальцбург. Парацельс ввел в медицину многие лекарственные средства неорганического происхождения: соединения железа, ртути, свинца, меди, мышьяка, серы, сурьмы. Препараты указанных элементов назначали больным в больших дозах, и часто одновременно с лечебным эффектом они проявляли токсическое действие: вызывали рвоту, понос, слюнотечение и т. д. Это, однако, вполне соответствовало представлениям того времени о лекарственной терапии. Следует отметить, что в медицине долго удерживалось представление о болезни как о чем-то вошедшем в организм больного извне. Для «изгнания» болезни назначали вещества, вызывающие рвоту, понос, слюнотечение, обильное потоотделение, применяли массивные кровопускания. Одним из первых медиков, отказавшихся от лечения массивными дозами лекарств, был Ганеман (1755-1843). Он родился и получил медицинское образование в Германии а затем работал врачом в Вене. Ганеман обратил внимание на то, что больные, получавшие лекарства в больших дозах выздоравливают реже, чем больные, которые такого лечения не получали, поэтому он предложил резко уменьшить дозировку лекарств. Не имея для этого никаких фактических данных, Ганеман утверждал, что терапевтическое действие лекарств увеличивается с уменьшением дозы. Следуя этому принципу, он назначал больным лекарственные средства в очень малых дозах. Как показывает экспериментальная проверка, в этих случаях вещества не оказывают никакого фармакологического действия. Согласно другому принципу, провозглашенному Ганеманом и также совершенно необоснованному, всякое лекарственное вещество вызывает «лекарственную болезнь». Если «лекарственная болезнь» сходна с «натуральной болезнью», она вытесняет последнюю. Учение Ганемана получило название «гомеопатия» (homoios - одинаковый; pathos - страдание, т. е. лечение подобного подобным), а последователи Ганемана стали называться гомеопатами. За прошедший со времени Ганемана период гомеопатия мало изменилась. Принципы гомеопатического лечения не обоснованы экспериментально. Проверки гомеопатического метода лечения в клинике, проводимые при участии гомеопатов, не показали его существенного терапевтического эффекта.

Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ. В 1806 г. из опия был выделен морфин. В 1818 г. выделен стрихнин, в 1820 г. - кофеин, в 1832 г. - атропин, в последующие годы - папаверин, пилокарпин, кокаин и др. Всего к концу XIX века было выделено около 30 подобных веществ (алкалоидов растений). Выделение чистых действующих начал растений в изолированном виде позволило точно определить их свойства. Этому способствовало появление экспериментальных методов исследования.

Первые фармакологические эксперименты были проведены физиологами. В 1819 г. известный французский физиолог Ф. Мажанди впервые исследовал на лягушке действие стрихнина. В 1856 г. другой французский физиолог Клод Бернар провел на лягушке анализ действия кураре. Почти одновременно и независимо от Клода Бернара аналогичные эксперименты были проведены в Петербурге известным русским судебным медиком и фармакологом Е. В. Пеликаном.

1.2. Классификация лечебных препаратов

Бурное развитие фармацевтической промышленности привело к созданию огромного числа лекарственных средств (в настоящее время сотни тысяч). Даже в специальной литературе появляются такие выражения, как "лавина" лекарственных препаратов или "лекарственные джунгли". Естественно, сложившаяся ситуация весьма затрудняет изучение лекарственных средств и их рациональное применение. Возникает острая необходимость в разработке классификации лекарственных средств, которая помогла бы врачам ориентироваться в массе препаратов и выбирать оптимальное для больного средство.

Лекарственный препарат - фармакологическое средство, разрешенное уполномоченным на то органом соответствующей страны в установленном порядке для применения с целью лечения, предупреждения или диагностики заболевания у человека или животного.

Лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение (противоопухолевые, антиангинальные, противомикробные средства);

фармакологические средства (вазодилаторы, антикоагументы, диуретики);

химические соединения (алкалоиды, стероиды, гликоиды, бензодиазенины).

Классификация лекарственных средств:

I . Средства, действующие на ЦНС (центральную нервную систему).

1 . Средства для наркоза;

2. Снотворные средства;

3. Психотропные препараты;

4. Противосудорожные (противоэпилептические средства);

5. Средства для лечения паркинсонизма;

6. Анальгезирующие средства и нестероидные противовоспалительные препараты;

7. Рвотные и противорвотные препараты.

II. Лекарственные средства, действующие на периферическую НС (нервную систему).

1. Средства, действующие на периферические холинергические процессы;

2. Средства, действующие на периферические адренергические процессы;

3. Дофалин и дофаминерические препараты;

4. Гистамин и антигистаминные препараты;

5. Серотинин, серотониноподобные и антисеротониновые препараты.

III . Средства, действующие преимущественно в области чувствительных нервных окончаний.

1. Местноанестезирующие препараты;

2. Обвалакивающие и адсорбирующие средства;

3. Вяжущие средства;

4. Средства, действие которых связано преимущественно с раздражением нервных окончаний слизистых оболочек и кожи;

5. Отхаркивающие средства;

6. Слабительные средства.

IV . Средства, действующие на ССС (сердечно-сосудистую систему).

1. Сердечные гликозиды;

2. Антиаритмические препараты;

3. Сосудорасширяющие и спазмолитические средства;

4. Антиангинальные препараты;

5. Препараты, улучшающие мозговое кровообращение;

6. Антигипертензивные средства;

7. Спазмолитические средства разных групп;

8. Вещества, влияющие на ангиотензиновую систему.

V. Средства, усиливающие выделительную функцию почек.

1. Диуретические средства;

2. Средства, способствующие выведения мочевой кислоты и удалению мочевых конкрементов.

VI. Желчегонные средства.

VII. Средства, влияющие на мускулатуру матки (маточные средства).

1. Средства, стимулирующие мускулатуру матки;

2. Средства, расслабляющие мускулатуру матки (токолитики).

VIII. Средства, влияющие на процессы обмена веществ.

1. Гормоны, их аналоги и антигормональные препараты;

2. Витамины и их аналоги;

3. Ферментны препараты и вещества с антиферментной активностью;

4. Средства, влияющие на свертывание крови;

5. Препараты гипохолестеринемического и гиполипопротеинемического действия;

6. Аминокислоты;

7. Плазмозамещающие растворы и средства для парентерального питания;

8. Препараты, применяемые для коррекции кислотно-щелочного и ионного равновесия в организме;

9. Разные препараты, стимулирующие метаболические процессы.

IX. Лекарственные препараты, модулирующие процессы иммунитете ("иммуномодуляторы").

1. Препараты, стимулирующие иммунологические процессы;

2. Иммунодепрессивные препараты (иммуносупресоры).

X. Препараты различных фармакологических групп.

1. Анорексигенные вещества (вещества, угнетающие аппетит);

2. Специфические антидоты, комплексоны;

3. Препараты для профилактики и лечения синдрома лучевой болезни;

4. Фотосенсибилизирующие препараты;

5. Специальные средства для лечения алкоголизма.

1. Химотерапевтические средства;

2. Антисептические средства.

XII. Препараты, применяемые для лечения злокачественных новоообразований.

1. Химотерапевтические средства.

2. Ферментные препараты, применяемые для лечения онкологических заболеваний;

3. Гормональные препараты и ингибиторы образования гормонов, применяемые преимущественно для лечения опухолей.

    1. Состав и физические свойства лекарственных веществ

В работе мы решили исследовать свойства лекарственных веществ, входящих в состав наиболее часто применяемых лекарственных препаратов и являющихся обязательными любой домашней аптечки.

Анальгин

В переводе, слово "анальгин" означает отсутствие боли. Трудно найти человека, который не принимал анальгин. Анальгин - главный препарат в группе ненаркотических анальгетиков - препаратов, способных уменьшать боль без влияния на психику. Уменьшение боли - не единственный фармакологический эффект анальгина. Способность уменьшать выраженность воспалительных процессов и способность снижать повышенную температуру тела - не менее ценны (жаропонижающий и противовоспалительный эффект). Тем не менее, анальгин редко используют с противовоспалительной целью, для этого есть куда более эффективные средства. А вот при лихорадке и боли он в самый раз.

Метамизол (анальгин) в течение многих десятилетий был в нашей стране препаратом скорой помощи, а не средством для лечения хронических заболеваний. Таким он и должен оставаться.

Анальгин синтезирован в 1920 г. в поисках легко растворимой формы амидопирина. Это третье основное направление в разработке болеутоляющих средств. Анальгин, как утверждает статистика, один из самых любимых препаратов, а главное - всем доступен. Хотя на самом деле ему совсем немного лет - всего около 80. Анальгин специалисты разработали специально, чтобы бороться с сильной болью. И действительно, немало людей он избавил от мучений. Применялся он в качестве доступного обезболивающего средства, поскольку широкого ассортимента средств против боли в то время не было. Конечно, использовались наркотические анальгетики, но медицина того времени уже располагала достаточными данными о , и эта группа средств применялась только в соответствующих случаях. Препарат Анальгин имеет большую популярность в медицинской практике. Уже одно название говорит о том, Анальгин от чего помогает и в каких случаях применяется. Ведь в переводе оно означает "отсутствие боли". Анальгин относится к группе безнаркотических анальгетиков, - т.е. препаратов, способных уменьшать боль без влияния на психику.

В клиническую практику анальгин (метамизол натрия) был впервые внедрен в Германии в 1922 году. Анальгин стал незаменимым для госпиталей Германии во время Второй Мировой войны. В течение многих лет он оставался очень популярным лекарственным средством, но эта популярность имела и обратную сторону: широкое и практически бесконтрольное его применение как безрецептурного препарата привело в 70-х гг. прошлого века к смертельным исходам от агранулоцитоза (иммунное заболевание крови) и шока. Это привело к тому, что анальгин был запрещен в ряде стран, в то время как в других он оставался доступным как безрецептурное средство. Риск серьезных побочных эффектов при использовании комбинированных препаратов, содержащих метамизол, выше, чем при приеме "чистого" анальгина. Поэтому в большинстве стран подобные средства были изъяты из обращения.

Торговое наименование: а нальгин.
Международное наименование: Метамизол натрий (Metamizole sodium).
Групповая принадлежность: Анальгетическое ненаркотическое средство.
Лекарственная форма: капсулы, раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки, таблетки [для детей].

Химический состав и физико-химические свойства анальгина

Анальгин. Analginum.

Метамизол натрий.Metamizolum natricum

Химическое название: 1-фенил–2,3-диметил-4–метил-аминопиразолон-5-N-метан - сульфат натрия

Брутто-формула: C 13 H 18 N 3 NaO 5 S

Рис.1

Внешний вид: бесцветные игольчатые кристаллы горьковатого вкуса без запаха.

Парацетамол

В 1877 году Хармон Норзроп Морз синтезировал парацетамол в Университете Джонса Хопкинса в реакции восстановления р-нитрофенола оловом в ледяной уксусной кислоте, но только в 1887 году клинический фармаколог Джозеф фон Меринг испытал парацетамол на пациентах. В 1893 году фон Меринг опубликовал статью, где сообщалось о результатах клинического применения парацетамола и фенацетина, другого производного анилина. Фон Меринг утверждал, что, в отличие от фенацетина, парацетамол обладает некоторой способностью вызывать метгемоглобинемию. Парацетамол затем был быстро отвергнут в пользу фенацетина. Продажи фенацетина начала Bayer как лидирующая в то время фармацевтическая компания. Внедрённый в медицину Генрихом Дрезером в 1899 году, фенацетин был популярен на протяжении многих десятилетий, особенно в широко рекламируемой безрецептурной «микстуре от головной боли», обычно содержащей фенацетин, аминопириновое производное аспирина, кофеин, а иногда и барбитураты.

Торговое название: Парацетамол

Международное название: парацетамол

Групповая принадлежность: анальгезирующее ненаркотическое средство.

Лекарственная форма: таблетки

Химический состав и физико-химические свойства парацетамола

Парацетамол. Paracetamolum.

Брутто - формула: C 8 H 9 NO 2 ,

Химическое название: N-(4-Гидроксифенил) ацетамид.

Внешний вид: белый или белый с кремовым или Рис.2 розовым оттенком кристаллический порошок. Легко оенш679к969 растворим в спирте, нерастворим в воде.

Аспирин (ацетисалициловая кислота)

Аспирин впервые был синтезирован в 1869 году. Это один из самых известных и широко использующихся препаратов. Оказалось, что история аспирина является типичной для многих других лекарств. Ещё в 400 году до нашей эры греческий врач Гиппократ рекомендовал пациентам для избавления от боли жевать ивовую кору. Он, конечно, не мог знать о химическом составе обезболивающих компонентов, однако это были производные ацетилсалициловой кислоты (химики выяснили это лишь двумя тысячелетиями позже). В 1890 г. Ф.Хоффман, работавший в немецкой фирме «Байер», разработал метод синтеза ацетилсалициловой кислоты – основы аспирина. На рынок аспирин был выпущен в 1899 году, а с 1915 года стал продаваться без рецептов. Механизм обезболивающего действия был открыт лишь в 1970 –ых годах. Последние годы аспирин стал средством для профилактики сердечнососудистых заболеваний.

Торговое название : Аспирин.

Международное название : ацетилсалициловая кислота.

Групповая принадлежность : нестероидный противовоспалительный препарат .

Лекарственная форма: таблетки.

Химический состав и физико-химические свойства аспирина

Ацетилсалициловая кислота. Acidum acetylsalicylicum

Брутто – формула: С 9 Н 8 О 4

Химическое название: 2-ацетокси-бензойная кислота.

Внешний вид : ч истое вещество представляет Рис.3 собой белый кристаллический порошок, почти не обладающий словарь запахом, кислый на вкус.

Дибазол

Дибазол создавался в Советском Союзе еще в середине прошлого века. Впервые данное вещество было отмечено в 1946 г. как наиболее активная в физиологическом плане соль Бензимидазола. В ходе проводившихся опытов на лабораторных животных была замечена способность нового вещества улучшать передачу нервных импульсов в спинном мозге. Эта способность подтвердилась в ходе клинических испытаний, и препарат в начале 50-х г. был внедрен в клиническую практику для лечения заболеваний спинного мозга, в частности – полиомиелита. Сейчас используется как средство для укрепления иммунитета, улучшения метаболизма и повышения выносливости.

Торговое название: Дибазол.

Международное название :Дибазол. 2-ое:Бензилбензимидазола гидрохлорид.

Групповая принадлежность : препарат группы периферических вазодилататоров.

Лекарственная форма : раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки.

Химический состав и физико-химические свойства: Дибазол

Хорошо растворяется в воде, но плохо растворяется в спирте.

Брутто-формула : C 14 H 12 N 2 .

Химическое название : 2-(Фенилметил)-1H-бензимидазол.

Внешний вид : производное Бензимидазола,

Рис.4 представляет собой белый, бело- желтый или

светло-серый кристаллический порошок.

    1. Физиологическое и фармакологическое действие лекарственных препаратов

Анальгин.

Фармакологические свойства:

Анальгин относится к группе нестероидных противовоспалительных препаратов, эффективность которого обусловлена активностью метамизола натрия, который:

    Блокирует прохождение болевых импульсов по пучкам Голля и Бурдаха;

    Значительно повышает теплоотдачу, что обусловливает целесообразность использования при высокой температуре Анальгина;

    Способствует увеличению порога возбудимости таламических центров болевой чувствительности;

    Оказывает слабовыраженное противовоспалительное действие;

    Способствует некоторому спазмолитическому эффекту.

Активность Анальгина развивается примерно через 20 минут после приема, достигая максимума через 2 часа.

Показания к применению

Согласно инструкции, Анальгин применяется для устранения болевого синдрома, провоцируемого такими заболеваниями, как :

    Артралгия;

    Кишечная, желчная и почечная колика;

    Ожоги и травмы;

    Опоясывающий лишай;

    Невралгия;

    Декомпрессионная болезнь;

    Миалгия;

    Альгодисменорея и др.

Эффективным является использование Анальгина для устранения зубной и головной боли, а также послеоперационного болевого синдрома. Кроме того, препарат применяется при лихорадочном синдроме, вызванном укусами насекомых, инфекционно-воспалительными заболеваниями или посттрансфузионными осложнениями.

Для устранения воспалительного процесса и снижения температуры Анальгин применяется редко, так как для этого существуют более эффективные средства.

Парацетамол

Фармакологические свойства:

парацетамол быстро и почти полностью абсорбируется из желудочно-кишечного тракта. Связывается с белками плазмы на 15 %. Парацетамол проникает через гематоэнцефалический барьер. Менее 1 % от принятой кормящей матерью дозы парацетамола проникает в грудное молоко. Парацетамол подвергается метаболизму в печени и выделяется с мочой, главным образом, в виде глюкуронидов и сульфированных конъюгатов, менее 5 % выделяется в неизменном виде с мочой.

Показания к применению

    для быстрого облегчения головной боли, включая мигренозную боль;

    зубной боли;

    невралгии;

    мышечной и ревматической боли;

    а также при альгодисменореях, боли при травмах, ожогах;

    для снижения повышенной температуры при простудных заболеваниях и гриппе.

Аспирин

Фармакологические свойства:

Ацетилсалициловая кислота (АСК) обладает обезболивающим, жаропонижающим и противовоспалительным действием, что обусловлено ингибированием энзимов циклоксигеназ, участвующих в синтезе простагландинов.

АСК в диапазоне доз от 0,3 до 1,0 г применяется для снижения температуры при таких заболеваниях, как простуда и , и для облегчения суставных и мышечных болей.
АСК ингибирует агрегацию тромбоцитов, блокируя синтез тромбоксана А
2 в тромбоцитах.

Показания к применению

    для симптоматического облегчения головной боли;

    зубной боли;

    боли в горле;

    боли в мышцах и суставах;

    боли в спине;

    повышенная температура тела при простудных и других инфекционно-воспалительных заболеваниях (у взрослых и детей старше 15 лет)

Дибазол

Фармакологические свойства

Вазодилатирующее средство; обладает гипотензивным, сосудорасширяющим действием, стимулирует функцию спинного мозга, обладает умеренной иммуностимулирующей активностью. Оказывает непосредственное спазмолитическое действие на гладкие мышцы кровеносных сосудов и внутренних органов. Облегчает синаптическую передачу в спинном мозге. Вызывает расширение (непродолжительное) мозговых сосудов и поэтому особенно показан при формах артериальной гипертензии, обусловленных хронической гипоксией мозга из-за местных нарушений кровообращения (склероз церебральных артерий). В печени дибазол подвергается метаболическим превращениям путем метилирования и карбоксиэтилирования с образованием двух метаболитов. Преимущественно выводится почками, и в меньшей степени – через кишечник.

Показания к применению

    Различные состояния, сопровождающиеся артериальной гипертензией, в т.ч. и гипертоническая болезнь, гипертонические кризы;

    Спазм гладкой мускулатуры внутренних органов (кишечная, печеночная, почечная колика);

    Остаточные явления полиомиелита, паралич лицевого нерва, полиневриты;

    Профилактика вирусных инфекционных заболеваний;

    Повышение устойчивости организма к внешним неблагоприятным воздействиям.

    1. Выводы к главе 1

1) Выявлено, что учение о лекарствах является одной из самых древних медицинских дисциплин. Лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Первые лекарства были в основном растительного происхождения. Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ.

2) Установлено, что лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение;

фармакологические средства;

химические соединения.

3) Рассмотрен химический состав и физические свойства препаратов анальгина, парацетамола и аспирина, являющихся незаменимыми в домашней аптечке. Установлено что лекарственные вещества данных препаратов представляют собой сложные производные ароматических углеводородов и аминов.

4) Показаны фармакологические свойства исследуемых препаратов, а также показания к их применению и физиологическое действие на организм. Чаще всего данные лекарственные вещества используются как жаропонижающие и болеутоляющие.

Глава 2. Практическая часть. Исследование качества лекарственных препаратов

2.1. Качество лекарственных препаратов

В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

Понятия «фальсификат», «контрафакт» и «подделка» юридически имеют определенные различия, но для обычного гражданина они идентичны.. Под поддельным понимается лекарственное средство, произведенное с изменением его состава, при сохранении внешнего вида, и часто сопровождаемое ложной информацией о его составе. Контрафактным считается лекарственное средство, производство и дальнейшая продажа которого осуществляется под чужими индивидуальными признаками (товарным знаком, наименованием или местом происхождения) без разрешения патентодержателя, что является нарушением прав интеллектуальной собственности.

Фальсифицированное лекарственное средство часто расценивается как поддельное и контрафактное. В Российской Федерации фальсифицированным считается лекарственное средство, которое признается таковым Росздравнадзором после тщательной проверки с опубликованием соответствующей информации на сайте Росздравнадзора. Со дня публикации обращение ФЛС должно быть прекращено с изъятием из торговой сети и помещением вкарантинную зону отдельно от других лекарств. Перемещение данного ФЛС является нарушением.

Фальсификация лекарств считается четвертым злом здравоохранения после малярии, СПИДа и курения. В своем большинстве фальсификаты не соответствуют по качеству, эффективности или побочным действиям оригинальным препаратам, нанося непоправимый вред здоровью больного человека; производятся и распространяются без контроля соответствующих органов, причиняя огромный финансовый вред законным производителям лекарств и государству. Смерть от ФЛС входит в первую десятку причин гибели людей.

Специалисты выделяют четыре основных типа поддельных лекарств.

1-й тип - «лекарства-пустышки». В этих «лекарствах», как правило, отсутствуют основные лечебные компоненты. Принимающие их не ощущают разницы и даже на ряд пациентов прием «пустышек» может за счет плацебо- эффекта оказывать позитивное воздействие.

2-й тип - «лекарства-имитаторы». В таких «лекарствах» используются более дешевые и менее эффективные, чем в подлинном лекарственном средстве активные компоненты. Опасность заключается в недостаточной концентрации активных веществ, в которых нуждаются пациенты.

3-й тип - «измененные лекарства». В этих «лекарствах» содержится такое же активное вещество, как и в оригинальном средстве, но в больших или меньших количествах. Естественно, что применение подобных средств небезопасно, потому что может привести к усилению побочных эффектов (особенно при передозировке).

4-й тип - «лекарства-копии». Они относятся к наиболее распространенным в России типам фальсифицированных средств (до 90 % от общего числа подделок), выпускаемым обычно подпольными производствами и по тем или иным каналам попадающим в партии легальных средств. Эти препараты содержат такие же активные компоненты, как легальные средства, но при этом отсутствуют гарантии качества лежащих в их основе субстанций, соблюдения норм технологических процессов производства и пр. Следовательно, повышен риск последствий приема подобных препаратов

Правонарушители привлекаются к административной ответственности, предусмотренной ст. 14.1 КоАП РФ, либо к уголовной, ответственность за которое, в связи с отсутствием в уголовном кодексе ответственности за фальсификацию, наступает по нескольким составам преступлений и в основном квалифицируется как мошенничество (ст. 159 УК РФ) и незаконное использование товарного знака (ст. 180 УК РФ).

Федеральный закон «О лекарственных средствах» дает правовое основание для изъятия и уничтожения ФЛС как производимых в России и 15ввозимых из-за рубежа, так и находящихся в обращении на отечественном фармрынке.

Часть 9 статьи 20, устанавливает запрет на ввоз на территорию России лекарственных средств, являющихся подделками, незаконными копиями или фальсифицированными лекарственными средствами. Таможенные органы обязаны конфисковать и уничтожить их в случае обнаружения.

Ст. 31, устанавливает запрет на продажу лекарственных, пришедших в негодность, имеющих истекший срок годности или признанных фальсифицированными. Они также подлежат уничтожению. Минздрав России своим приказом от 15.12.2002 г. № 382 утвердил Инструкцию о порядке уничтожения лекарственных средств, пришедших в негодность, лекарственных средств с истекшим сроком годности и лекарственных средств, являющихся подделками или незаконными копиями. Но в инструкцию до сих пор не внесли изменения в соответствии с дополнениями в ФЗ «О лекарственных средствах» от 2004 г. о фальсифицированных и недоброкачественных лекарственных средств, где теперь дано определение и указано на запрет их обращения и изъятие из оборота, а также предложено государственным органам привести нормативные правовые акты в соответствие с данным законом.

Росздравнадзор издал письмо № 01И-92/06 от 08.02.2006 «Об организации работы территориальных Управлений Росздравнадзора с информацией о недоброкачественных и фальсифицированных лекарственных средствах», которое противоречит правовым нормам Закона о лекарственных средствах и сводит на нет борьбу с фальсификатом. Закон предписывает изымать из обращения и уничтожать фальсифицированные лекарственные средства, а Росздравнадзор (абзац 4 п. 10) предлагает территориальным Управлениям контролировать изъятие из обращения и уничтожение фальсифицированных лекарственных средств. Предлагая 16 осуществлять контроль только за возвратом собственнику или владельцу для дальнейшего уничтожения, Росздравнадзор разрешает продолжить обращение фальсифицированных лекарственных средств и вернуть их собственнику, то есть самому преступнику-фальсификатору, что грубо нарушает Закон и Инструкцию по уничтожению. При этом часто идут ссылки на Федеральный закон от 27.12.2002 г. № 184-ФЗ «О техническом регулировании», в ст. 36-38 которого установлен порядок возврата изготовителю либо продавцу продукции, не соответствующей требованиям технического регламента. Однако необходимо иметь в виду, что этот порядок не распространяется на фальсифицированные лекарственные средства, которые производятся без соблюдения технического регламента, неизвестно кем и где.

С 1 января 2008 г. в соответствии со ст. 2 Федерального закона от 18.12.2006 г. № 231-ФЗ «О введении в действие части четвертой Гражданского кодекса Российской Федерации» вступило в силу новое законодательство о защите интеллектуальной собственности, к объектам которой относятся средства индивидуализации, в том числе и товарные знаки, с помощью которых производители лекарственных средств, защищают права на свою продукцию. В Четвертой части Гражданского Кодекса РФ (ч. 4 ст. 1252) дано определение контрафактным материальным носителям результатов интеллектуальной деятельности и средств индивидуализации

Фармацевтическая отрасль России сегодня нуждается в тотальном научно-техническом перевооружении, так как ее основные фонды изношены. Необходимо внедрение новых стандартов, в том числе и ГОСТ Р 52249- 2004, без которых производство высококачественных лекарственных средств не возможно.

2.2. Качество лекарственных препаратов.

Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из методических разработок для учащихся в медицинских колледжах и в Интернете).

Реакции с препаратом анальгин.

Определение растворимости анальгина.

1 .Растворили 0,5 таблетки анальгина (0,25 г) в 5 мл воды, а вторую половину таблетки в 5 мл этилового спирта.


Рис.5 Взвешивание препарата Рис.6 Измельчение препарата

Вывод: анальгин хорошо растворился в воде, однако практически не растворился в спирте.

Определение наличия группы СН 2 SO 3 Na .

    Нагрели 0,25 г препарата (полтаблетки) в 8 мл разбавленной соляной кислоты.

Рис.7 Нагревание препарата

Обнаружили: сначала запах сернистого ангидрида, затем формальдегида.

Вывод: данная реакция позволяет доказать, что в состав анальгина входит группа формальдегидсульфоната.

    Определение свойств хамелеона

1 мл полученного раствора анальгина добавляли 3-4 капли 10 % раствора хлорида железа (III ). При взаимодействии анальгина с Fe 3+ образуются продукты окисления,

окрашенные в синий цвет, который потом переходит в темно-зеленый, а далее оранжевый, т.е. проявляет свойства хамелеона. Это означает, что препарат качественный.

Для сравнения мы взяли препараты с разными сроками годности и выявили, с помощью указанной выше методики качество препаратов.


Рис.8 Появление свойства хамелеона

Рис.9 Сравнение образцов препаратов

Вывод: реакция с препаратом более позднего срока производства протекает по принципу хамелеона, что свидетельствует о его качестве. А препарат более раннего производства не проявил это свойство, из этого следует, что данный препарат использовать по назначению нельзя.

4.Реакция анальгина с гидроперитом.(«Дымовая шашка»)

реакция идет сразу по двум местам: по сульфогруппе и метиламиниловой группировке. Соответственно, по сульфогруппе может образоываться сероводород, а также вода и кислород

-SO3 + 2H2O2 = H2S + H2O + 3O2.

Образующаяся вода приводит к частичному гидролизу по связи С - N и отщепляется метиламин, и тоже образуется вода и кислород:

-N(CH3) + H2O2 = H2NCH3 + H2O +1/2 O2

И наконец становится понятным, что за дым получается в этой реакции:

Сероводород взаимодействует с метиламином и получается гидросульфид метиламмония:

H2NCH3 + H2S = HS.

И взвесь его мелких кристалликов в воздухе и создает визуальное ощущение "дыма".

Рис. 10 Реакция анальгина с гидроперитом

Реакции с препаратом парацетамол.

Определение уксусной кислоты


Рис.11 Нагревание раствора парацетамола с соляной кислотой Рис.12 Охлаждение смеси

Вывод: появившийся запах уксусной кислоты означает, что данный препарат действительно является парацетамолом.

Определение фенолпроизводного парацетамола.

    К 1 мл раствора парацетамола добавили несколько капель 10 % -ного раствора хлорида железа (III ).

Рис.13 Появление синего окрашивания

Наблюдали: синее окрашивание, свидетельствует о наличии в составе вещества фенолпроизводного.

    0,05 г вещества вскипятили с 2 мл разбавленной соляной кислоты в течение 1 минуты и прибавили 1 каплю раствора дихромата калия.


Рис.14 Кипячение с соляной кислотой Рис.15 Окисление дихроматом калия

Наблюдали: появление сине-фиолетового окрашивания ,не переходящее в красное.

Вывод: в ходе проведенных реакций был доказан качественный состав препарата парацетамола, и установлено, что он является производным анилина.

Реакции с препаратом аспирин.

Для проведения опыта мы использовали таблетки аспирина изготовленные производственной фармацевтической фабрикой «Фармстандарт-Томскхимфарм». Годен до мая 2016 года.

Определение растворимости аспирина в этаноле.

Внесли в пробирки по 0,1 г лекарственных препаратов и добавили 10 мл этанола. При этом наблюдали частичную растворимость аспирина. Нагрели на спиртовке пробирки с веществами. Сравнили растворимость лекарственных препаратов в воде и этаноле.

Вывод: Результаты эксперимента показали, что аспирин лучше растворяется в этаноле, чем в воде, но выпадает в осадок в виде игольчатых кристаллов. Поэтому недопустимо применение аспирина совместно с этанолом. Следует сделать вывод о недопустимости применения алкогольсодержащих лекарств совместно с аспирином, а тем более с алкоголем.

Определение фенолпроизводного в аспирине.

В стакане смешали 0,5 г ацетилсалициловой кислоты, 5 мл раствора гидроксида натрия и прокипятили смесь в течение 3 минут. Реакционную смесь охладили и подкислили разбавленным раствором серной кислоты до выпадения белого кристаллического осадка. Отфильтровали осадок, часть его перенесли в пробирку, прилили к нему 1 мл дистиллированной воды и добавили 2-3 капли раствора хлорида железа.

Гидролиз сложноэфирной связи приводит к образованию фенолпроизводного, которое с хлоридом железа (3) дает фиолетовое окрашивание.


Рис.16 Кипячение смеси аспирина Рис.17 Окисление раствором Рис.18 Качественная реакция

с гидроксидом натрия серной кислоты на фенолпроизводное

Вывод: при гидролизе аспирина образуется фенолпроизводное, которое дает фиолетовое окрашивание.

Фенолпроизводное - это очень опасное для здоровья человека вещество, которое влияет на появление побочных эффектов на организм человека, при приеме ацетилсалициловой кислоты. Поэтому необходимо строго соблюдать инструкции по применению(данный факт упоминался еще в 19 веке).

2.3. Выводы к главе 2

1) Установлено, что в настоящее время создается огромное количество лекарственных веществ, но также много подделки. Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье. Качество лекарственных препаратов определено ГОСТ Р 52249 – 09. В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

2) Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из учебно-методического пособия для студентов химических и биологических специальностей).

3) В ходе проведенного эксперимента был доказан качественный состав препаратов анальгина, дибазола, парацетамола, аспирина и количественный состав анальгина. Результаты и более подробные выводы приведены в тексте работы в главе 2.

Заключение

Целью данного исследования было познакомиться со свойствами некоторых лекарственных веществ и установить их качество с помощью химического анализа.

Я провела анализ литературных источников с целью установления состава изучаемых лекарственных веществ, входящих в состав анальгина, парацетамола, аспирина, их классификации, химических, физических и фармацевтических свойств. Нами была подобрана методика, подходящая для установления качества выбранных лекарственных препаратов в аналитической лаборатории. Проведены исследования качества лекарственных препаратов по выбранной методике качественного анализа.

На основе проделанной работы было выяснено, что все лекарственные вещества соответствуют качеству ГОСТ.

Конечно, невозможно рассмотреть все многообразие лекарственных средств, их действие на организм, особенности применения и лекарственные формы этих препаратов, являющихся обычными химическими веществами. Более подробное знакомство с миром лекарств ждет тех, кто в дальнейшем будет заниматься фармакологией и медициной.

Также хочется добавить, что несмотря на бурное развитие фармакологической индустрии, учёным до сих пор не удалось создать ни одного лекарства без побочных эффектов. Об этом надо помнить каждому из нас: потому что, почувствовав недомогание, мы в первую очередь идём к врачу, потом – в аптеку, и начинается процесс лечения, который часто выражается в бессистемном приёме лекарств.

Поэтому в заключение хочется привести рекомендации по применению лекарственных препаратов:

    Лекарственные препараты необходимо правильно хранить, в специальном месте, подальше от источников света и тепла, согласно температурному режиму, который обязательно указывается производителем (в холодильнике или при комнатной температуре).

    Лекарственные препараты необходимо хранить в недоступных для детей местах.

    В аптечке не должно оставаться неизвестное лекарство. Каждая баночка, коробочка или пакетик должны быть подписаны.

    Нельзя использовать лекарства, если у них истек срок годности.

    Не принимайте препараты, назначенные другому человеку: хорошо переносимые одними, они могут вызвать лекарственную болезнь (аллергию) у других.

    Строго соблюдайте правила приема препарата: время приема (до или после еды), дозировки и интервал между приемами.

    Принимайте только те лекарства, которые вам прописал лечащий врач.

    Не спешите начинать с лекарств: иногда достаточно выспаться, отдохнуть, подышать свежим воздухом.

Соблюдая даже эти немногие и несложные рекомендации по применению лекарственных препаратов, Вы сможете сохранить главное – здоровье!

Библиографический список.

1) Аликберова Л.Ю.Занимательная химия: Книга для учащихся, учителей и родите-лей. –М.:АСТ-ПРЕСС, 2002.

2) Артеменко А.И. Применение органических соединений. – М.: Дрофа, 2005.

3) Машковский М.Д. Лекарственные средства. М.: Медицина, 2001.

4) Пичугина Г.В.Химия и повседневная жизнь человека. М.: Дрофа, 2004.

5) Справочник Видаль: Лекарственные препараты в России: Справочник.- М.: Астра-ФармСервис.- 2001.- 1536 с.

6) Тутельян В.А. Витамины: 99 вопросов и ответов.- М.- 2000.- 47 с.

7) Энциклопедия для детей, том 17. Химия. - М. Аванта+, 200.-640с.

8) Регистр лекарственных средств России "Энциклопедия лекарств".- 9-й вып.- ООО М; 2001.

9) Машковский М.Д. Лекарства ХХ века. М.: Новая волна, 1998, 320 с.;

10) Дайсон Г., Мей П. Химия синтетических лекарственных веществ. М.: Мир, 1964, 660 с.

11)Энциклопедия лекарств 9 выпуск 2002 года. Лекарственные средства М.Д. Машковский 14 издание.

12) http :// www . consultpharma . ru / index . php / ru / documents / proizvodstvo /710- gostr -52249-2009- part 1? showall =1

Унификация методов количественного определения лекарственных средств

Количественное определение – это заключительный этап фармацевтического анализа. Выбор оптимального метода количественного определения зависит от возможности оценить лекарственное средство по фармакологически активной части молекулы. Практически это сделать сложно, поэтому обычно количественное определение препарата проводят по одному его химическому свойству, связанному с наличием той или иной функциональной группы, атома, катиона или аниона, а в ряде случаев по количеству связанной с органическим основанием минеральной кислоты. Например: папаверина гидрохлорид можно количественно определить по связанной хлористоводородной кислоте, но это допускается только при экспресс-анализе в условиях аптеки.

Существует значительное различие в анализе субстанций лекарственных веществ и их лекарственных форм. Условия применения методов количественного анализа в лекарственных формах зависит от состава лекарственной смеси и физико-химических свойств всех, входящих в неё ингредиентов. При анализе многокомпонентных лекарственных смесей используют два подхода: количественное определение без предварительного разделения ингредиентов и с их разделением. При выборе способов количественного определения без разделения ингредиентов необходимо убедиться, что сопутствующие ингредиенты не влияют на результаты анализа.

Классификация методов количественного определения лекарственных веществ

Физические

Химические

Физико-химические

Биологические

1. Определение плотности.

2. Температуры кипения.

1. Гравиметрия.

2. Титриметрические методы:

Осадительное титрование;

Кислотно-основное;

Окислительно – восстано-вительное титрование;

Комплексонометрия;

Нитритометрия.

3. Элементный анализ.

4. Газометрические методы.

1. Абсорбционные методы.

2. Оптические методы.

3. Методы, основанные на испускании излучения.

4. Методы, основанные на использовании магнитного поля.

5. Электрохимические

6. Методы разделения.

7. Термические методы.

1. Испытания на токсичность.

2. Испытания на пирогенность.

4. Микробиологическая чистота.

Физические методы

Эти методы используют для количественного определения, например , этилового спирта. ФС рекомендует устанавливать содержание спирта этилового по плотности, либо по температуре кипения водно-спиртовых растворов (в том числе настоек) по методикам ОФС ГФ.

Химические методы

1. Весовой метод (гравиметрия)

Метод основан на том, что из исследуемого вещества, взятого в виде точной навески на аналитических весах или в определенном объеме, отмеренном при помощи бюретки или пипетки, выделяют посредством химических реакций составную часть в виде осадка. Этот осадок отфильтровывают и взвешивают. Для расчета количественного содержания вещества в препарате используют формулу. Метод отличается высокой точностью, но трудоемок.

Гравиметрически количественно определяют соли хинина, которые под действием раствора щелочи образуют осадок основания хинина; алкалоиды, осажденные в виде пикратов; натриевые соли барбитуратов, которые при действии кислоты образуют осадки кислотных форм; некоторые витамины, образующие нерастворимые в воде продукты гидролиза.

2. Титриметрические (объемные) методы

Отличаются значительно меньшей трудоемкостью, чем гравиметрический метод, и достаточно высокой точностью.

Осадительное титрование

Метод основан на использовании реакций осаждения или образования малодиссоциированных соединений.

Аргентометрия

Метод основан на реакциях осаждения галогенидов раствором нитрата серебра.

KCI + AgNO 3 → AgCI ↓ + KNO 3 Э = М.м.

Прямое титрование: Метод Мора : среда нейтральная, индикатор - хромат калия, определяют Cl - и Br - . Метод Фаянса: среда уксуснокислая, индикатор - флуоресцеин (Cl -) и эозинат натрия (I - , Br -).

Обратное титрование (роданометрия, тиоцианометрия): Метод Фольгарда: среда азотнокислая, индикатор - железоаммониевые квасцы, титранты - AgNO 3 и NH 4 CNS, в точке эквивалентности появляется красное окрашивание. Косвенный метод Фольгарда: сначала после добавления 0,1 мл 0,1 М раствора NH 4 CNS появляется красное окрашивание от взаимодействия с индикатором, а затем титруют раствором AgNO 3 до обесцвечивания.

Аргентометрически определяют галогениды щелочных металлов, четвертичных аммониевых оснований, соли галогеноводородных кислот органических оснований, сульфамидов.

Например : сульфаниламиды образуют соли серебра в виде белого осадка.

Аргентометрический метод отличается высокой чувствительностью, правильностью и воспроизводимостью, прост в исполнении. Однако значительный расход дорогостоящего серебра настоятельно требует его замены.

Меркуриметрия

Метод основан на образовании слабодиссоциированных соединений ртути (II).

Точку эквивалентности устанавливают потенциометрически или с помощью индикаторов – дифенилкарбазида или дифенилкарбазона, которые образуют с избытком ионов ртути (II) окрашенные в красно-фиолетовый цвет соединения.

При анализе йодидов возможен безиндикаторный метод .

2KI + Hg(NO 3) 2 → HgI 2 ↓ + 2KNO 3 (красный осадок)

HgI 2 + 2 KI → K 2 HgI 4 (бесцветный)

K 2 HgI 4 + Hg(NO 3) 2 → 2HgI 2 ↓ + 2KNO 3 (красный осадок)

Э= 2 М.м. Титруют до устойчивой красной мути.

Кислотно-основное титрование (метод нейтрализации)

Это методы количественного определения лекарственных веществ, обладающих кислотными и основными свойствами в водной или неводной среде.

Растворимые в воде вещества, обладающие кислыми свойствами, титруют сильными основаниями (алкалиметрия), а вещества основного характера – растворами сильных кислот (ацидиметрия). Наиболее часто используют при титровании индикаторы: метиловый оранжевый, метиловый красный, бромтимоловый синий, фенолфталеин, тимолфталеин.

Ацидиметрия

Алкалиметрия

Водная среда

Прямое титрование

Титруют хлористоводородной кислотой натриевые соли неорганических кислот.

Например :

NaHCO 3 + HCl → NaCl + CO 2 + H 2 O

Прямое титрование

Титруют неорганические кислоты, вещества гетероциклической структуры, содержащие в молекуле группу –COOH.

Например: HCl + NaOH → NaCl + H 2 O

Обратное титрование

(сочетание с гидролизом)

Лекарственные вещества, представляющие собой сложные эфиры или амиды предварительно гидролизуют раствором щелочи, избыток которого затем оттитровывают кислотой.

+ 2NaOH →

СН 3 СООNa + Н 2 О

NaOH + HCl → NaCl + H 2 O

Обратное титрование

(сочетание с гидролизом)

Гидролиз сложных эфиров или амидов обычно выполняют титрованным раствором кислоты, а избыток её оттитровывают щелочью (например, уротропин).

Параллельно проводят контрольный опыт.

Косвенное определение

Алкалоиды теобромина и теофиллина осаждают ионами серебра, при этом выделяется эквивалентное количество азотной кислоты, которую оттитровывают щелочью.

N-H + AgNO 3 → N-Ag ↓ + HNO 3

HNO 3 + NaOH → NaNO 3 + H 2 O

Титрование в смешанных растворителях

Иногда органическое основание извлекают хлороформом или эфиром, растворитель отгоняют и титруют основание ацидиметрическим методом.

N − + HCI → N − . HCI

Смешанные растворители состоят из воды и органических растворителей. Их применяют, когда препарат плохо растворим в воде или водные растворы имеют слабовыраженные кислотные или щелочные свойства.

Например : салициловая кислота растворяется в спирте и титруется водным раствором NaOH.

Некоторые лекарственные вещества при растворении в смешанных растворителях изменяют кислотно-основные свойства.

Например: борная кислота при растворении в смеси воды и глицерина усиливает кислотные свойства вследствие образования одноосновной диглицериноборной кислоты.

Смешанные растворители (спирт + вода или ацетон + вода) используют для алкалиметрического титрования сульфаниламидов.

Несмешивающиеся растворители (вода + хлороформ) используют при количественном определении солей органических оснований (например, алкалоиды, новокаин). Хлороформ извлекает из водной фазы органическое основание, выделяющееся при титровании щелочью.

N − . HCI + NaOH → N − ↓ + NaCI + Н 2 О

Оксимный метод

Основан на нейтрализации эквивалентного количества хлористоводородной кислоты, выделившейся в результате взаимодействия гидроксиламина гидрохлорида с кетопроизводными (например, камфорой):

С=O+NH 2 OH·HCl → C=N-OH↓ + HCl +H 2 O

HCl + NaOH → NaCl + H 2 O

Титрование в среде неводных растворителей (неводное титрование)

Обратное титрование

(сочетание с этерификацией)

Некоторые спирты и фенолы например, (глицерин, синэстрол) ацетилируют в неводной среде уксусным ангидридом. Затем избыток уксусного ангидрида, нагревая с водой, превращают в уксусную кислоту, которую титруют щелочью.

2R-OH + (CH 3 CO) 2 O → 2R- O - C -CH 3 + H 2 O

(CH 3 CO) 2 O изб. + H 2 O → 2CH 3 COOH

2CH 3 COOH +2NaOH→ 2CH 3 COONa+2 Н 2 О

Параллельно проводят контрольный опыт.

Органические основания и их соли (например : кофеин, фтивазид) проявляют слабые основные свойства, поэтому титрование выполняют, используя в качестве растворителя безводную уксусную кислоту или уксусный ангидрид.

Титрант – раствор хлорной кислоты в безводной уксусной кислоте.

Индикатор – кристаллический фиолетовый в безводной уксусной кислоте.

Слабое органическое основание при рас-

творении в безводной уксусной кислоте

становится более сильным основанием:

R 3 N + CH 3 COOH → R 3 N + − H + CH 3 COO -

При приготовлении титранта образуются перхлорат-ион и ион ацетония:

CH 3 COOH + HClO 4 → ClO 4 - + CH 3 COOH 2 +

При титровании:

CH 3 COO - + CH 3 COOH 2 + → 2 CH 3 COOH, а

R 3 N + − H + ClO 4 - → [ R 3 N + − H ] ClO 4 -

Галогениды четвертичных аммониевых оснований и соли галогеноводородных кислот нельзя точно оттитровать в неводной среде, так как галоген-ионы проявляют кислые свойства даже в среде безводной уксусной кислоты. Поэтому их титруют в присутствии (CH 3 COO) 2 Hg (можно взять смесь муравьиной кислоты с уксусным ангидридом 1:20), при этом галоген-ионы связываются в малодиссоциированные соединения. Примеры димедрол, дибазол, промедол, эфедрина гидрохлорид.

Органические вещества, проявляющие слабые кислые свойства (например: фенолы, барбитураты, сульфаниламиды) титруют, используя в качестве растворителя ДМФ.

Титрант – раствор NaOH в CH 3 OH или раствор метилата натрия.

Индикатор – тимоловый синий.

R−OH + H−C−N−CH 3 → R−O - + H−C−N−CH 3

R−O - + CH 3 ONa → R−ONa + CH 3 O –

CH 3 O - + H−C−N−CH 3 → CH 3 OH + H−C−N−CH 3

Недостатком неводного титрования является необходимость герметизированной титровальной установки. Работа ведется с весьма токсичными летучими растворителями.

Окислительно-восстановительное титрование

Методы основаны на использовании окислительных и восстановительных свойств анализируемых веществ и, соответственно, титрантов.

Перманганатометрия

Метод основан на использовании окислительных свойств титранта - перманганата калия в сильнокислой среде. При прямом титровании индикатором служит сам титрант, избыток которого придает раствору розовое окрашивание.

Этим методом титруют железо восстановленное, перекись водорода.

2 КМnО 4 + 5 Н 2 О 2 + 3 Н 2 SО 4 → 2 МnSО 4 + К 2 SО 4 + 8 Н 2 О + 5 О 2

При обратном титровании избыток титранта устанавливают йодометрически. Количественно определяют обратным титрованием натрия нитрит.

5 NaNO 2 + 2 KMnO 4 + 3 H 2 SO 4 → 5 NaNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O

2 KMnO 4 + 10 KI + 8 H 2 SO 4 → 2 MnSO 4 + 5 I 2 + 6 K 2 SO 4 + 8 H 2 O

Индикатор – крахмал.

Йодометрия

Метод основан на использовании окислительных свойств свободного йода и восстановительных свойствах йодид-ионов: I 2 + 2ē ↔ 2I -

Этим методом определяют лекарственные вещества способные окислиться или восстанавливается, а также способные образовывать с йодом продукты замещения. Йодометрически можно определять избыток титранта в обратном перманганатометрическом, йодхлорметрическом, йодатометрическом, броматометрическом методах.

Прямое титрование йодом применяют для определения натрия тиосульфата.

2 Na 2 S 2 O 3 + I 2 → Na 2 S 4 O 6 + 2 NaI

Индикатор – крахмал.

Обратное йодометрическое определение основано на окислении альдегидов йодом в щелочной среде: I 2 + 2 NaOH → NaOI + NaI + H 2 O

R-C-H + NaOI + NaOH → R-C-ONa +NaI+H 2­ O

Затем добавляют избыток серной кислоты, непрореагировавший гипойодид превращается в йод, который оттитровывают тиосульфатом натрия:

NaOI + NaI + Н 2 SО 4 → I 2 + Na 2 SO 4 + H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Индикатором служит крахмал, образующий с йодом соединение, окрашенное в синий цвет.

В щелочной среде йодом окисляют фурациллин, окисление изониазида ведут в растворе гидрокарбоната натрия. В основе йодометрического определения метионина и анальгина лежит реакция окисления серы. Пенициллины окисляют йодом после кислотного гидролиза.

Для количественного определения используют также сочетание реакций замещения или осаждения с йодометрией. С помощью титрованного раствора йода получают йодопроизводные фенолов, первичных ароматических аминов, антипирина, а также осадки полийодидов алкалоидов состава ∙ HI ∙ I 4 . Полученные осадки отфильтровывают, а избыток йода в фильтрате титруют тиосульфатом натрия.

Восстановительные свойства калия йодида используют при титровании заместителя .

Лекарственное вещество, проявляющее свойство окислителя, выделяет эквивалентное количество свободного йода при взаимодействии с йодидом калия. Выделившийся свободный йод оттитровывают тиосульфатом натрия. Этим методом количественно определяют перекись водорода, калия перманганат, хлорную известь, хлорамин, пантоцид.

Н 2 О 2 + 2 КI + Н 2 SО 4 → I 2 + К 2 SО 4 + 2 Н 2 О

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Индикатор – крахмал.

Йодхлорметрия

Это метод аналогичный йодометрии. Но в качестве титранта используют раствор йодмонохлорида, который более устойчив. Йодхлорметрическим методом способом обратного титрования определяют фенолы и первичные ароматические амины. Анализируемое вещество осаждается в виде йодпроизводного, избыток титранта устанавливают йодометрически:

ICI + KI → I 2 + KCI

Йодатометрия

Этим методом количественно определяют, например, аскорбиновую кислоту. Лекарственное вещество окисляются титрованным раствором йодата калия. Избыток титранта устанавливают йодометрически, индикатор – крахмал.

КIO 3 + 5 КI + 6 HCI → 3 I 2 + 6 KCI + 3 H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Броматометрия

В качестве титранта используют бромат калия, проявляющий в кислой среде окислительные свойства. Определение обычно ведут в присутствии бромида.

КBrO 3 + 5 КBr + 6 HCI → 3 Br 2 + 6 KCI + 3 H 2 O

Выделившийся свободный бром расходуется либо на окисление (гидразины и гидразиды), либо на бромирование (фенолы и первичные ароматические амины) лекарственного вещества. Индикаторами при прямом титровании служат красители – азосоединения: метиловый красный, метиловый оранжевый – которые окисляются и обесцвечиваются под действием избытка титранта в точке эквивалентности.

При обратной броматометрии конец титрования устанавливают йодометрически:

Br 2 + 2 KI → I 2 + 2 KBr

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Дихроматометрия

Метод основан на осаждении некоторых солей органических оснований титрованным раствором дихромата калия: 2 Cl - + K 2 Cr 2 O 7 → 2 Cr 2 O 7 + 2 KCl

Нерастворимые дихроматы оснований отфильтровывают, а избыток титранта определяют йодометрически: K 2 Cr 2 O 7 + 6 KI +7 H 2 SO 4 → Cr 2 (SO 4) 3 + 3 I 2 + 4 K 2 SO 4 + 7 H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Определяют этим методом метиленовый синий и акрихин.

Цериметрия

Метод основан на использовании устойчивого титранта сульфата церия (IV), который в кислой среде восстанавливается до сульфата церия (III): Ce 4+ + ē → Ce 3+

Прямым титрованием определяют соединения железа (II):

2 FeSO 4 + 2 Ce(SO 4) 2 → Fe 2 (SO 4) 3 + Ce 2 (SO 4) 3

При этом используют индикаторы – дифениламин или о-фенантролин (фероин).

При обратном титровании избыток титранта определяют йодометрически:

2 Ce(SO 4) 2 + 2 KI → I 2 + Ce 2 (SO 4) 3 + K 2 SO 4

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2NaI

Комплексонометрия

Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с титрованным раствором трилона Б – динатриевой солью этилендиаминтетрауксусной кислоты. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона:

CH 2 COONa CH 2 COONa

CH 2 − N CH 2 − N

CH 2 COOH CH 2 COO

CH 2 COOH + MgSO 4 → CH 2 COO Mg + Н 2 SO 4

CH 2 − N CH 2 − N

CH 2 COONa CH 2 COONa

CH 2 COONa CH 2 COO

CH 2 − N CH 2 − N

CH 2 COOH CH 2 COO

CH 2 COOH + Bi 2 (SO 4) 3 → CH 2 COO Bi + Н 2 SO 4 + Na 2 SO 4

CH 2 − N CH 2 − N

CH 2 COONa CH 2 COO - Э = М/2.

При комплексонометрическом титровании соблюдают определенный интервал значений pH, который достигается с помощью буферных растворов.

Применяемые индикаторы называются металлоиндикаторами: КХТС (кислотный хром темно-синий), КХЧС (кислотный хром черный специальный), пирокатехиновый фиолетовый, ксиленоловый оранжевый, кальконкарбоновая кислота, мурексид. Перед достижением точки эквивалентности свободные ионы металла, содержащиеся в титруемом растворе свяжутся с титрантом. Последние порции титранта разрушают комплекс иона металла с индикатором,при этом происходит образование комплекса металла с трилоном Б и высвобождение

свободных ионов индикатора, поэтому титруе­мый раствор приобретает окраску свободного индикатора.

При прямом титровании к анализируемому раствору солей кальция, магния, цинка, висмута добавляют необходимый объем буферного раствора для достижения нужного значения рН и указанное в частной статье количество металлоиндикатора. Затем титруют раствором трилона Б до тех пор, пока в эквивалентной точке не произойдет изменение окраски индикатора.

Обратное титрование применяют, если нет подходящего индикатора для прямого титрования, если реакция металла с трилоном Б идет медленно и если происходи гидролиз металла при образовании комплексоната.

При анализе солей ртути или свинца избыток трилона Б, не вступивший во взаимодействие с анализируемым катионом, оттитровывают, используя в качестве титрантов растворы солей цинка или магния. Титруют также в присутствии металлоиндикатора и при определенном значении рН среды.

Метод вытеснения (или титрование по заместителю) применяют когда нельзя подобрать соответствующий индикатор, например при анализе солей свинца. Сначала известную навеску соли магния оттитровывают трилоном Б в среде аммиачного буфера в присутствии металлоиндикатора. Затем, после изменения окраски титруемой жидкости, добавляют навеску анализируемой соли свинца. При этом ионы свинца, образуя более прочный комплекс с трилоном Б, вытесняет эквивалентное количество ионов магния. Далее проводят количественное определение содержания вытесненных ионов магния.

Нитритометрия

Метод основан на реакциях взаимодействия первичных и вторичных ароматических аминов с нитритом натрия в кислой среде, в присутствии катализатора бромида калия и при пониженной температуре.

Первичные ароматические амины (новокаин, сульфаниламиды) образуют с титрантом диазосоединения: Ar-NH 2 + NaNO 2 + HCl → Cl - + NaCl + 2H 2 O

Вторичные ароматические амины (дикаин) в тех же условиях образуют N-нитрозосединения: Ar-NH-R + NaNO 2 + HCl→ Ar- N – R + NaCl + H 2 O

Точку эквивалентности устанавливают с помощью внешних индикаторов (йодкрахмальная бумага), внутренних индикаторов (тропеолин 00, нейтральный красный) или потенциометрически.

3. Элементный анализ

Используют для количественного определения соединений, содержащих азот, галогены, серу, висмут и ртуть.

Метод Кьельдаля

Это фармакопейный метод определения азота в органических соединениях, содержащих аминный, амидный и гетероциклический азот. Он основан на сочетании минерализации органического вещества с последующим применением кислотно-основного титрования. Вначале осуществляют минерализацию образца, нагревая с концентрированной серной кислотой в колбе Кьельдаля. Затем полученный гидросульфат аммония обрабатывают щелочью и отгоняют выделившийся аммиак в приемник с борной кислотой. В результате образуется метаборат и тетраборат аммония, которые титруют 0,1 М HCl. Параллельно выполняют контрольный опыт для повышения точности анализа.

Для веществ, содержащих легко гидролизующуюся в щелочной среде амидную группу, используют косвенный метод Кьельдаля. Это упрощенный вариант в котором исключена стадия минерализации. Препарат разрушают щелочью в колбе Кьельдаля и отгоняют выделившийся аммиак (или диалкиламин) в приемник. Метод трудоемкий.

Метод сжигания в колбе с кислородом

Метод основан на разрушении органического вещества, содержащего галогены, серу, фосфор, сожжением в колбе, наполненной кислородом в поглощающей жидкости и последующем определении элементов, находящихся в растворе в виде ионов или молекул. Качественное и количественное определения выполняют различными химическими или физико-химическими методами. Преимущество метода в быстроте минерализации, в исключении потерь элемента в процессе минерализации, высокой чувствительности анализа.

Для анализа галогенсодержащих органических веществ применяют так же и другие методы минерализации (восстановительную, окислительную и др.).

Газометрический анализ

Определяют кислород и циклопропан. Метод применяется ограничено.

Физико-химические методы анализа

Эти методы отличаются экспрессностью, избирательностью, высокая чувствительностью, возможностью унификации и автоматизации, объективностью оценки качества препарата по фармакологически активной части молекулы. Физико-химические методы используют для испытаний подлинности, доброкачественности и количественного определения лекарственных веществ.

Оптические методы основаны на определении показателя преломления луча света в испытуемом растворе (рефрактометрия), измерении интерференции света (интерферомет-

рия), способности раствора вещества вращать плоскость поляризованного луча (поляриметрия). Методы отличаются минимальным расходом анализируемого вещества.

Абсорбционные методы основаны на свойствах веществ поглощать свет в различных областях спектра. Например, СПФ - в УФ-спектре, ФЭК - в видимой области спектра,

ИК-спектроскопия – в ИК-спектре.

К методам, основанным на испускании излучения , относятся фотометрия пламени (измеряют интенсивность излучения спектральных линий испытуемых элементов), флуориметрия (основана на способности веществ флуоресцировать в УФ-свете) и радиохимические методы (основаны на измерении β – или γ – излучения).

Методы, основанные на использовании магнитного поля, представляют собой ЯМР-и ПМР-спектроскопию, а также масс-спектрометрию.

К электрохимическим методам относятся потенциометрия, основанная на измерении равновесных потенциалов, возникающих на границе между испытуемым раствором и погруженным в него электродом; полярография, основанная на измерении силы тока, возникающего на микроэлектроде при электровосстановлении или электроокислении анализируемого вещества в растворе; кулонометрия, основанная на измерении количества электричества, затраченного на электрохимическое восстановление или окисление определяемых ионов.

К методам разделения относят хроматографию, основанную на разделении веществ за счет распределения их между подвижной и неподвижной фазами; электрофорез, основанный на способности заряженных частиц к перемещению в электрическом поле; экстракцию из твердого вещества или из раствора экстрагентом, не смешивающимся с исходной фазой и легко отделяющимся от нее и от экстрагируемого вещества.

Термические методы анализа основаны на точной регистрации равновесного состояния между кристаллической и жидкой фазами анализируемого вещества.

Биологические методы анализа

Биологическую оценку качества лекарственных препаратов (антибиотиков, сердечных гликозидов, гормонов) проводят по силе фармакологического эффекта или по токсичности. Проводят биологические испытания на животных, отдельных изолированных органах, отдельных группах клеток, а также определенных штаммов микроорганизмов. Активность препаратов выражают в ЕД (единицы действия). К биологическим испытаниям относят определение пирогенности на кроликах, токсичности на мышах, определение содержания гистаминоподобных веществ на кошках.

ОпределениеКурсовая работа >> Медицина, здоровье

... Методы контроля исходного сырья. D. Методы анализа промежуточных продуктов. Е. Методы анализа готового лекарственного средства ... Нифантьев, О.Е. Аббревиатуры, термины и определения в сфере обращения лекарственных средств : Словарь-справочник / О.Е. Нифантьев, ...

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Вступление
  • Глава 1. Основные принципы фармацевтического анализа
    • 1.1 Критерии фармацевтического анализа
    • 1.2 Ошибки, возможные при проведении фармацевтического анализа
    • 1.4 Источники и причины недоброкачественности лекарственных веществ
    • 1.5 Общие требования к испытаниям на чистоту
    • 1.6 Методы фармацевтического анализа и их классификация
  • Глава 2. Физические методы анализа
    • 2.1 Проверка физических свойств или измерение физических констант лекарственных веществ
    • 2.2 Установление рН среды
    • 2.3 Определение прозрачности и мутности растворов
    • 2.4 Оценка химических констант
  • Глава 3. Химические методы анализа
    • 3.1 Особенности химических методов анализа
    • 3.2 Гравиметрический (весовой) метод
    • 3.3 Титриметрические (объемные) методы
    • 3.4 Газометрический анализ
    • 3.5 Количественный элементный анализ
  • Глава 4. Физико-химические методы анализа
    • 4.1 Особенности физико-химических методов анализа
    • 4.2 Оптические методы
    • 4.3 Абсорбционные методы
    • 4.4 Методы, основанные на испускании излучения
    • 4.5 Методы, основанные на использовании магнитного поля
    • 4.6 Электрохимические методы
    • 4.7 Методы разделения
    • 4.8 Термические методы анализа
  • Глава 5. Биологические методы анализа1
    • 5.1 Биологический контроль качества лекарственных средств
    • 5.2 Микробиологический контроль лекарственных средств
  • Выводы
  • Список использованной литературы

Вступление

Фармацевтический анализ -- это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 --10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 --10 -9 %; чувствительность спектрофотометрических методов Ю -3 --10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра -- количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2--0,3)%.

Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.

Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001--0,01) г, т.е. с предельной относительной ошибкой 0,1--1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.

1.2 Ошибки, возможные при проведении фармацевтического анализа

При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).

Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.

Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.

Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.

Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).

Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект -- индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2--3)%, ИК-спектрофотометрией ±(5--12)%, газо- жидкостцой хроматографией ±(3--3,5)%; полярографией ±(2--3)%; потенциометрией ±(0,3--1)%.

При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3--7)%.

Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20--30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.

Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3--6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.

1.3 Общие принципы испытаний подлинности лекарственных веществ

Испытание на подлинность -- это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.

1.4 Источники и причины недоброкачественности лекарственных веществ

Основные источники технологических и специфических примесей -- аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.

На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.

Технологические факторы -- первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, -- все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.

Вторая группа факторов -- образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1--5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.

В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.

Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".

Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".

Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.

При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.

Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).

Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.

Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.

В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.

Фармакопейный тест на определение примесей тяжелых металлов -- один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.

1.5 Общие требования к испытаниям на чистоту

Оценка степени чистоты лекарственного препарата -- один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их можно разделить на две группы: примеси, оказывающие влияние на фармакологическое действие лекарственного препарата, и примеси, указывающие на степень очистки вещества. Последние не влияют на фармакологический эффект, но присутствие их в больших количествах снижает концентрацию и соответственно уменьшает активность препарата. Поэтому фармакопеи устанавливают определенные пределы этих примесей в лекарственных препаратах.

Таким образом, основной критерий доброкачественности лекарственного препарата -- наличие допустимых пределов физиологически неактивных примесей и отсутствие токсичных примесей. Понятие отсутствие условно и связано с чувствительностью способа испытания.

Общие требования, которые предъявляются к испытаниям на чистоту, -- чувствительность, специфичность и воспроизводимость используемой реакции, а также пригодность ее применения для установления допустимых пределов содержания примесей.

Для испытаний чистоты избирают реакции с такой чувствительностью, которая позволяет определить допустимые пределы примесей в данном лекарственном препарате. Эти пределы устанавливают предварительной биологической проверкой с учетом возможного токсического воздействия примеси.

Определить максимальное содержание примесей в испытуемом препарате можно двумя путями (эталонным и безэталонным). Один из них основан на сравнении с эталонным раствором (стандартом). При этом в одинаковых условиях наблюдают окраску или помутнение, возникающие под действием какого-либо реактива. Второй путь -- установление предела содержания примесей по отсутствию положительной реакции. При этом используют химические реакции, чувствительность которых ниже, чем предел обнаружения допустимых примесей.

Для ускорения выполнения испытаний на чистоту, их унификации и достижения одинаковой точности анализа в отечественных фармако- пеях использована система эталонов. Эталон представляет собой образец, содержащий определенное количество открываемой примеси. Установление наличия примесей производят колориметрическим или нефелометрическим методом, сравнивания результаты реакций в растворе эталона и в растворе препарата после добавления одинаковых количеств соответствующих реактивов. Достигаемая при этом точность вполне достаточна, чтобы установить, больше или меньше, чем допустимо, содержится примесей в испытуемом препарате.

При выполнении испытаний на чистоту необходимо строго соблюдать общие указания, предусмотренные фармакопеями. Вода и используемые реактивы не должны содержать ионов, наличие которых устанавливают; одинакового диаметра и бесцветными должны быть пробирки; навески должны отвешиваться с точностью до 0,001 г; реактивы следует добавлять одновременно и в одинаковых количествах как к эталонному, так и к испытуемому раствору; образующуюся опалесценцию наблюдают в проходящем свете на темном фоне, а окраску -- в отраженном свете на белом фоне. Если устанавливают отсутствие примеси, то к испытуемому раствору прибавляют все реактивы, кроме основного; затем полученный раствор делят на две равные части и к одной из них прибавляют основной реактив. При сравнении не должно быть заметных различий между обеими частями раствора.

Следует иметь в виду, что последовательность и скорость прибавления реактива влияют на результаты испытаний на чистоту. Иногда необходимо также соблюдать интервал времени, в течение которого следует вести наблюдение за результатом реакции.

Источником примесей при производстве готовых лекарственных форм могут служить плохо очищенные наполнители, растворители и другие вспомогательные вещества. Поэтому степень чистоты этих веществ должна подвергаться тщательному контролю перед использованием их в производстве.

1.6 Методы фармацевтического анализа и их классификация

В фармацевтическом анализе используются разнообразные методы исследования: физические, физико-химические, химические, биологические. Применение физических и физико-химических методов требует соответствующих приборов и инструментов, поэтому данные методы называют также приборными, или инструментальными.

Использование физических методов основано на измерении физических констант, например, прозрачности или степени мутности, цветности, влажности, температуры плавления, затвердевания и кипения и др.

С помощью физико-химических методов измеряют физические константы анализируемой системы, которые изменяются в результате химических реакций. К этой группе методов относятся оптические, электрохимические, хроматографические.

Химические методы анализа основаны на выполнении химических реакций.

Биологический контроль лекарственных веществ осуществляют на животных, отдельных изолированных органах, группах клеток, на определенных штаммах микроорганизмов. Устанавливают силу фармакологического эффекта или токсичность.

Методики, используемые в фармацевтическом анализе, должны быть чувствительными, специфическими, избирательными, быстрыми и пригодными для экспресс-анализа в условиях аптеки.

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

Подлинность лекарственного вещества подтверждают; агрегатное состояние (твердое вещество, жидкость, газ); окраска, запах; форма кристаллов или вид аморфного вещества; гигроскопичность или степень выветриваемости на воздухе; устойчивость к воздействию света, кислорода воздуха; летучесть, подвижность, воспламеняемость (жидкостей). Окраска лекарственного вещества -- одно из характерных свойств, позволяющее осуществить его предварительную идентификацию.

Определение степени белизны порошкообразных лекарственных средств -- физический метод, впервые включенный в ГФ XI. Степень белизны (оттенка) твердых лекарственных веществ можно оценить различными инструментальными методами на основе спектральной характеристики света, отраженного от образца. Для этого измеряют коэффициенты отражения при освещении образца белым светом, полученным от специального источника со спектральным распределением или пропущенным через светофильтры с максимумом пропускания 614 нм (красный) или 459 нм (синий). Можно также измерять коэффициент отражения света, пропущенного через зеленый светофильтр (522 нм). Коэффициент отражения -- это отношение величины отраженного светового потока к величине падающего светового потока. Он позволяет определить наличие или отсутствие у лекарственных веществ цветового оттенка по степени белизны и степени яркости. Для белых или белых с сероватым оттенком веществ степени белизны теоретически равна 1. Вещества, у которых она 0,95--1,00, а степени яркости < 0,85, имеют сероватый оттенок.

Более точно оценку белизны лекарственных веществ можно осуществить с помощью спектрофотометров отражения, например СФ-18, выпускаемых ЛОМО (Ленинградским оптико-механическим объединением). Интенсивность цветовых или сероватого оттенков устанавливают по абсолютным коэффициентам отражения. Значения степени белизны и степени яркости являются характеристиками качества белых и белых с оттенками лекарственных веществ. Их допустимые пределы регламентируются в частных статьях.

Более объективным является установление различных физических констант: температуры плавления (разложения), температуры затвердевания или кипения, плотности, вязкости. Важный показатель подлинности -- растворимость лекарственного препарата в воде, растворах кислот, щелочей, органических растворителях (эфире, хлороформе, ацетоне, бензоле, этиловом и метиловом спирте, маслах и др.).

Константой, характеризующей гомогенность твердых веществ, является температура плавления. Ее используют в фармацевтическом анализе для установления подлинности и чистоты большинства твердых лекарственных веществ. Известно, что это температура, при которой твердое тело находится в равновесии с жидкой фазой при насыщенной фазе пара. Температура плавления является постоянной величиной для индивидуального вещества. Присутствие даже небольшого содержания примесей изменяет (как правило, снижает) температуру плавления вещества, что позволяет судить о степени его чистоты. Подтвердить индивидуальность исследуемого соединения можно пробой смешанного плавления, так как смесь двух веществ, имеющих одинаковые температуры плавления, плавится при той же температуре.

Для установления температуры плавления ГФ XI рекомендует капиллярный метод, позволяющий подтвердить подлинность и ориентировочно степень чистоты лекарственного препарата. Так как в лекарственных препаратах допускается некоторое содержание примесей (нормируемое ФС или ВФС), то температура плавления может быть выражена не всегда четко. Поэтому большинство фармакопей, в том числе и ГФ XI, под температурой плавления подразумевает интервал температур, при котором происходит процесс плавления испытуемого препарата от появления первых капель жидкости до полного перехода вещества в жидкое состояние. Некоторые органические соединения при нагревании разлагаются. Процесс этот происходит при температуре разложения и зависит от ряда факторов, в частности от скорости нагрева.

Приведенные в частных статьях ГФ (ФС, ВФС) интервалы температур плавления указывают на то, что между началом и окончанием плавления лекарственного вещества интервал не должен превышать 2°С. Если он превышает 2°С, то в частной статье должно быть указано, на какую величину. Если переход вещества из твердого в жидкое состояние нечеткий, то вместо интервала температуры плавления устанавливают температуру, при которой происходит только начало или только окончание плавления. Это значение температуры должно укладываться в интервал, приведенный в частной статье ГФ (ФС, ВФС).

Описание прибора и методик определения температуры плавления приведено в ГФ XI, вып.1 (с. 16). В зависимости от физических свойств применяют различные методы. Один из них рекомендуется для твердых веществ, легко превращаемых в порошок, а два других -- для веществ, не растирающихся в порошок (жиры, воск, парафин, вазелин и др.). Следует учитывать, что на точность установления температурного интервала, при котором происходит плавление испытуемого вещества, могут влиять условия подготовки образца, скорость подъема и точность измерения температуры, опытность аналитика.

В ГФ XI, вып. 1 (с. 18) уточнены условия определения температуры плавления и рекомендован новый прибор с диапазоном измерений в пределах от 20 до 360°С (ПТП) с электрическим обогревом. Он отличается наличием стеклянного блока-нагревателя, обогрев которого осуществляется навитой константановой проволокой, оптическим приспособлением и щитком управления с номограммой. Капилляры для этого прибора должны иметь длину 20 см. Прибор ПТП обеспечивает более высокую точность определения температуры плавления. Если получаются расхождения при определении температуры плавления (указанной в частной статье), то следует приводить результаты ее определения на каждом из использованных приборов.

Под температурой затвердевания понимают наиболее высокую, остающуюся в течение короткого времени, постоянную температуру, при которой происходит переход вещества из жидкого состояния в твердое. В ГФ XI, вып. 1 (с. 20) описаны устройство прибора и методика определения температуры затвердевания. По сравнению с ГФ X в нее внесено дополнение, касающееся веществ, способных переохлаждаться.

Температура кипения, или, точнее говоря, температурные пределы перегонки, -- это интервал между начальной и конечной температурой кипения при нормальном давлении 760 мм рт.ст. (101,3 кПа). Температуру, при которой в приемник перегнались первые 5 капель жидкости, называют начальной температурой кипения, а температуру, при которой перешло в приемник 95% жидкости, -- конечной температурой кипения. Указанные пределы температур можно установить макрометодом и микрометодом. Помимо прибора, рекомендованного ГФ XI, вып. 1 (с. 18), для определения температуры плавления (ПТП) может быть использован прибор для определения температурных пределов перегонки (ТПП) жидкостей, изготавливаемый Клин- ским заводом "Лаборприбор" (ГФ XI, вып. 1, с. 23). Этот прибор обеспечивает получение более точных и воспроизводимых результатов.

Следует учитывать, что температура кипения зависит от атмосферного давления. Температуру кипения устанавливают только у сравнительно небольшого числа жидких лекарственных препаратов: циклопропана, хлорэтила, эфира, фторотана, хлороформа, трихлорэтилена, этанола.

При установлении плотности берут массу вещества определенного объема. Плотность устанавливают с помощью пикнометра или ареометра по методикам, описанным в ГФ XI, вып. 1 (с. 24--26), строго соблюдая температурный режим, так как плотность зависит от температуры. Обычно это достигают термостатированием пикнометра при 20°С. Определенные интервалы значений плотности подтверждают подлинность этилового спирта, глицерина, масла вазелинового, вазелина, парафина твердого, галогенопроизводных углеводородов (хлорэтила, фторотана, хлороформа), раствора формальдегида, эфира для наркоза, амилнитрита и др. ГФ XI, вып. 1 (с. 26) рекомендует устанавливать содержание спирта в препаратах спирта этилового 95, 90, 70 и 40%-ного по плотности, а в лекарственных формах либо дистилляцией с последующим установлением плотности, либо по температуре кипения водно-спиртовых растворов (в том числе настоек).

Дистилляцию осуществляют кипячением определенных количеств спиртоводных смесей (настоек) в колбах, герметически соединенных с приемником. Последний представляет собой мерную колбу вместимостью 50 мл. Собирают 48 мл отгона, доводят его температуру до 20°С и добавляют водой до метки. Плотность отгона устанавливают пикнометром.

При определении спирта (в настойках) по температуре кипения используют прибор, описанный в ГФ XI, вып. 1 (с. 27). Показания термометра снимают через 5 мин после начала кипения, когда температура кипения стабилизируется (отклонения не более ±0,1°С). Полученный результат пересчитывают на нормальное атмосферное давление. Концентрацию спирта вычисляют с помощью таблиц, имеющихся в ГФ XI, вып. 1 (с.28).

Вязкость (внутреннее трение) -- физическая константа, подтверждающая подлинность жидких лекарственных веществ. Различают динамическую (абсолютную), кинематическую, относительную, удельную, приведенную и характеристическую вязкость. Каждая из них имеет свои единицы измерения.

Для оценки качества жидких препаратов, имеющих вязкую консистенцию, например глицерина, вазелина, масел, обычно определяют относительную вязкость. Она представляет собой отношение вязкости исследуемой жидкости к вязкости воды, принятой за единицу. Для измерения кинематической вязкости используют различные модификации вискозиметров типа Оствальда и Уббелоде. Кинематическую вязкость обычно выражают в м 2 * с -1 . Зная плотность исследуемой жидкости, можно затем вычислить динамическую вязкость, которую выражают в Па * с. Динамическую вязкость можно также установить с помощью ротационных вискозиметров различных модификаций типа ""Полимер РПЭ-1 И или микрореометров серии ВИР. На измерении скорости падения шарика в жидкости основано устройство вискозиметров типа Гепплера. Они позволяют установить динамическую вязкость. Все приборы должны термостатироваться, так как вязкость в значительной степени зависит от температуры испытуемой жидкости.

Растворимость в ГФ XI рассматривают не как физическую константу, а как свойство, которое может служить ориентировочной характеристикой испытуемого препарата. Наряду с температурой плавления растворимость вещества при постоянной температуре и давлении является одним из параметров, по которому устанавливают подлинность и чистоту практически всех лекарственных веществ.

Методика определения растворимости по ГФ XI основана на том, что навеска предварительно растертого (в необходимых случаях) препарата вносится в отмеренный объем растворителя и непрерывно перемешивается в течение 10 мин при (20±2)°С. Растворившимся считают препарат, в растворе которого в проходящем свете не наблюдается частиц вещества. Если для растворения препарата требуется более 10 мин, то его относят к числу медленно растворимых. Их смесь с растворителем нагревают на водяной бане до 30° С и наблюдают полноту растворения после охлаждения до (20±2)°С и энергичного встряхивания в течение 1--2 мин. Более детальные указания об условиях растворения медленно растворимых лекарственных веществ, а также препаратов, образующих мутные растворы, приведены в частных статьях. Показатели растворимости в различных растворителях указываются в частных статьях. В них оговариваются случаи, когда растворимость подтверждает степень чистоты лекарственного вещества.

В ГФ XI, вып. 1 (с. 149) включен метод фазовой растворимости, который дает возможность осуществлять количественную оценку степени чистоты лекарственного вещества путем точных измерений значений растворимости. Этот метод основан на правиле фаз Гиббса, которое устанавливает зависимость между числом фаз и числом компонентов в условиях равновесия. Суть установления фазовой растворимости заключается в последовательном прибавлении увеличивающейся массы препарата к постоянному объему растворителя. Для достижения состояния равновесия смесь подвергают длительному встряхиванию при постоянной температуре, а эатем с помощью диаграмм определяют содержание растворенного лекарственного вещества, т.е. устанавливают, является ли испытуемый препарат индивидуальным веществом или смесью. Метод фазовой растворимости отличается объективностью, не требует для выполнения дорогостоящего оборудования, знания природы и структуры примесей. Это позволяет использовать его для качественного и количественного анализов, а также для изучения стабильности и получения очищенных образцов препаратов (до степени чистоты 99,5%), Важное достоинство метода -- возможность отличать оптические изомеры и полиморфные формы лекарственных веществ. Метод применим ко всем видам соединений, которые образуют истинные растворы.

2.2 Установление рН среды

Важную информацию о степени чистоты лекарственного препарата дает значение рН его раствора. По этому значению можно судить о наличии примесей кислых или щелочных продуктов.

Принцип обнаружения примесей свободных кислот (неорганических и органических), свободных щелочей, т.е. кислотности и щелочности, заключается в нейтрализации этих веществ в растворе препарата или в водном экстракте. Нейтрализацию выполняют в присутствии индикаторов (фенолфталеин, метиловый красный, тимолфталеин, бромфеноловый синий и др). О кислотности или щелочности судят либо по окраске индикатора, либо по ее изменению, либо устанавливают количество титрованного раствора щелочи или кислоты, затраченное на нейтрализацию.

Реакция среды (рН) является характеристикой химических свойств вещества. Это важный параметр, который следует устанавливать при выполнении технологических и аналитических операций. Степень кислотности или основности растворов необходимо учитывать при выполнении испытаний чистоты лекарственных препаратов и количественного определения. От значений рН растворов зависят сроки хранения лекарственных веществ, а также осрбенности их применения.

Значение рН ориентировочно (до 0,3 ед.) можно определять с помощью индикаторной бумаги или универсального индикатора. Из многочисленных способов установления значения рН среды ГФ XI рекомендует колориметрический и потенциометрический способы.

Колориметрический способ весьма несложен по выполнению. Он основан на свойстве индикаторов изменять свою окраску при определенных интервалах значений рН среды. Для выполнения испытаний используют буферные растворы с постоянной концентрацией водородных ионов, отличающихся друг от друга на величину рН, равную 0,2. К серии таких растворов и к испытуемому раствору прибавляют одинаковое количество (2--3 капли) индикатора. По совпадению окраски с одним из буферных растворов судят о значении рН среды испытуемого раствора.

В ГФ XI, вып. 1 (с. 116) приведены подробные сведения о приготовлении стандартных буферных растворов для различных областей рН: от 1,2 до 11,4. В качестве реактивов для этой цели используют сочетания различных соотношений растворов хлорида калия, гидрофталата калия, однозамещенного фосфата калия, борной кислоты, тетрабората натрия с соляной кислотой или раствором гидроксида натрия. Вода очищенная, используемая для приготовления буферных растворов, должна иметь рН 5,8--7,0 и быть свободной от примеси углекислого газа.

Потенциометрический способ следует отнести к физико-химическим (электрохимическим) методам. Потенциометрическое определение рН основано на измерении электродвижущей силы элемента, составленного из стандартного электрода (с известным значением потенциала) и индикаторого электрода, потенциал которого зависит от рН испытуемого раствора. Для установления рН среды используют потенциометры или рН-метры различных марок. Их настройку осуществляют с помощью буферных растворов. Потенциометрический способ определения рН отличается от колориметрического более высокой точностью. Он имеет меньше ограничений, может быть применен для определения рН в окрашенных растворах, а также в присутствии окислителей и восстановителей.

В ГФ XI, вып. 1 (с. 113) включена таблица, в которой указаны растворы веществ, используемых в качестве стандартных буферных растворов, для проверки рН-метров. Приведенные в таблице данные позволяют установить зависимость рН этих растворов от температуры.

2.3 Определение прозрачности и мутности растворов

Прозрачность и степень мутности жидкости по ГФ X (с. 757) и ГФ XI, вып. 1 (с. 198) устанавливают путем сравнения при вертикальном расположении пробирок испытуемой жидкости с тем же растворителем или с эталонами. Жидкость считают прозрачной, если при ее освещении матовой электролампой (мощностью 40 Вт) на черном фоне не наблюдается присутствие нерастворенных частиц, кроме единичных волокон. По ГФ X эталоны представляют собой взвесь, полученную из определенных количеств белой глины. Эталонами для определения степени мутности по ГФ XI служат взвеси в воде из смесей определенных количеств гидразина сульфата и гекса- метилентетрамина. Вначале готовят 1%-ный раствор гидразина сульфата и 10%-ный раствор гексаметилентетрамина. Смешиванием равных объемов этих растворов получают исходный эталон.

В общей статье ГФ XI приведена таблица, в которой указаны количества основного эталона, необходимые для приготовления эталонных растворов I, II, III, IV. Здесь же указана схема просмотра прозрачности и степени мутности жидкостей.

Окраску жидкостей по ГФ XI, вып. 1 (с. 194) устанавливают путем сравнения испытуемых растворов с равным количеством одного из семи эталонов при дневном отраженном свете на матово- белом фоне. Для приготовления эталонов используют четыре основных раствора, полученных смешением в различных соотношениях исходных растворов хлорида кобальта, дихромата калия, сульфата меди (II) и хлорида железа (III). В качестве растворителя для приготовления основных растворов и эталонов используют раствор серной кислоты (0,1 моль/л).

Бесцветными считают жидкости, не отличающиеся по цвету от воды, а растворы -- от соответствующего растворителя.

Адсорбционная способность и дисперсность также являются показателями чистоты некоторых лекарственных препаратов.

Очень часто используют для обнаружения примесей органических веществ испытание, основанное на их взаимодействии с концентрированной серной кислотой. Последняя при этом может выступать в роли окислителя или дегидратирующего средства.

В результате таких реакций образуются окрашенные продукты. Интенсивность полученной окраски не должна превышать соответствующего эталона цветности.

Для установления чистоты лекарственных препаратов широко используют определение золы (ГФ XI, вып.2, с.24). Прокаливанием навески препарата в фарфоровом (платиновом) тигле устанавливают общую золу. Затем после добавления разведенной соляной кислоты определяют золу, нерастворимую в соляной кислоте. Кроме того, определяют также сульфатную золу, получаемую после нагревания и прокаливания навески препарата, обработанной концентрированной серной кислотой.

Один из показателей чистоты органических лекарственных препаратов -- содержание остатка после прокаливания.

При установлении чистоты некоторых лекарственных препаратов проверяют также наличие восстанавливающих веществ (по обесцвечиванию раствора перманганата калия), красящих веществ (бесцветность водного извлечения). Обнаруживают также водорастворимые соли (в нерастворимых препаратах), вещества, нерастворимые в этаноле, и примеси, нерастворимые в воде (по эталону мутности).

2.4 Оценка химических констант

Для оценки чистоты масел, жиров, воска, некоторых сложных эфиров используют такие химические константы, как кислотное число, число омыления, эфирное число, йодное число (ГФ XI, вып. 1, с. 191, 192, 193).

Кислотное число -- масса гидроксида калия (мг), которая необходима для нейтрализации свободных кислот, содержащихся в 1 г исследуемого вещества.

Число омыления -- масса гидроксида калия (мг), которая необходима для нейтрализации свободных кислот и кислот, образующихся при полном гидролизе сложных эфиров, содержащихся в 1 г исследуемого вещества.

Эфирное число -- масса гидроксида калия (мг), которая необходима для нейтрализации кислот, образующихся при гидролизе сложных эфиров, содержащихся в 1 г исследуемого вещества (т.е. разность между числом омыления и кислотным числом).

Йодное число -- масса иода (г), которая связывает 100 г исследуемого вещества.

В ГФ XI приведены методики установления указанных констант и способы их расчета.

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

Эти методы используются для установления подлинности лекарственных веществ, испытаний их на чистоту и количественного определения.

Для целей идентификации используют реакции, которые сопровождаются внешним эффектом, например изменением окраски раствора, выделением газообразных продуктов, выпадением или растворением осадков. Установление подлинности неорганических лекарственных веществ заключается в обнаружении с помощью химических реакций катионов и анионов, входящих в состав молекул. Химические реакции, применяемые для идентификации органических лекарственных веществ, основаны на использовании функционального анализа.

Чистота лекарственных веществ устанавливается помощью чувствительных и специфичных реакций, пригодных для определения допустимых пределов содержания примесей.

Химические методы оказались самыми надежными и эффективными, они дают возможность выполнить анализ быстро и с высокой достоверностью. В случае сомнения в результатах анализа последнее слово остается за химическими методами.

Количественные методы химического анализа подразделяют на гравиметрический, титриметрический, газометрический анализ и количественный элементный анализ.

3.2 Гравиметрический (весовой) метод

Гравиметрический метод основан на взвешивании осажденного вещества в виде малорастворимого соединения или отгонки органических растворителей после извлечения лекарственного вещества. Метод точен, но длителен, так как предусматривает такие операции, как фильтрование, промывание, высушивание (или прокаливание) до постоянной массы.

Из неорганических лекарственных веществ гравиметрическим методом можно определять сульфаты, переводя их в нерастворимые соли бария, и силикаты, предварительно прокаливая до диоксида кремния.

Рекомендуемые ГФ методики гравиметрического анализа препаратов солей хинина основаны на осаждении основания этого алкалоида под действием раствора гидроксида натрия. Аналогично определяют бигумаль. Препараты бензилпенициллина осаждают в виде N -этилпиперидиновой соли бензилпенициллина; прогестерон -- в виде гидра- зона. Возможно применение гравиметрии для определения алкалоидов (взвешиванием свободных от примесей оснований или пикратов, пикролонатов, кремневольфраматов, тетрафенилборатов), а также для определения некоторых витаминов, которые осаждают в виде нерастворимых в воде продуктов гидролиза (викасол, рутин) или в виде кремневольфрамата (тиамина бромид). Известны также гравиметрические методики, основанные на осаждении из натриевых солей кислотных форм барбитуратов.

Подобные документы

    Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат , добавлен 19.09.2010

    Критерии фармацевтического анализа, общие принципы испытаний подлинности лекарственных веществ, критерии доброкачественности. Особенности экспресс-анализа лекарственных форм в условиях аптеки. Проведение экспериментального анализа таблеток анальгина.

    курсовая работа , добавлен 21.08.2011

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Состояние маркетинговых исследований фармацевтического рынка ЛС. Методы анализа ассортимента лекарственных средств. Товароведческая характеристика винпоцетина. Анализ препаратов для улучшения мозгового кровообращения, разрешенных к применению в стране.

    курсовая работа , добавлен 03.02.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Классификация лекарственных форм и особенности их анализа. Количественные методы анализа однокомпонентных и многокомпонентных лекарственных форм. Физико-химические методы анализа без разделения компонентов смеси и после предварительного их разделения.

    реферат , добавлен 16.11.2010

    Микрофлора готовых лекарственных форм. Микробное обсеменение лекарственных препаратов. Способы предупреждения микробной порчи готовых лекарственных веществ. Нормы микробов в нестерильных лекарственных формах. Стерильные и асептические препараты.

    презентация , добавлен 06.10.2017

    Изучение современных лекарственных препаратов для контрацепции. Способы их применения. Последствия взаимодействия при совместном применении контрацептивов с другими препаратами. Механизм действия негормональных и гормональных лекарственных препаратов.

    курсовая работа , добавлен 24.01.2018

    История развития технологии лекарственных форм и аптечного дела в России. Роль лекарств в лечении заболеваний. Правильный прием лекарственных препаратов. Способ применения и дозы. Профилактика болезней с использованием медикаментов, рекомендации врача.

    презентация , добавлен 28.11.2015

    Система анализа маркетинговой информации. Отбор источников информации. Анализ ассортимента аптечной организации. Характерные черты рынка лекарственных препаратов. Принципы сегментирования рынка. Основные механизмы действия противовирусных препаратов.

5 / 5 ( голосов: 1 )

Сегодня довольно часто можно обнаружить некачественные лекарства и таблетки-пустышки, которые вызывают у потребителя сомнения по поводу их эффективности. Существуют определенные методы анализа лекарственных средств, позволяющие с максимальной точностью определить состав лекарства, его характеристики, а это позволит выявить степень влияния лекарственного средства на организм человека. Если у вас есть определенные жалобы на лекарственный препарат, тогда его химическая экспертиза и объективное заключение могут быть доказательством в любом судебном разбирательстве.

Какие методы анализа лекарственных средств используют в лабораториях?

Для установления качественных и количественных характеристик лекарства в специализированных лабораториях широко применяют такие методы:

  • Физические и физико-химические, которые помогают определить температуру плавления и затвердевания, плотность, состав и чистоту примесей, найти содержание тяжелых металлов.
  • Химические, определяющие наличие летучих веществ, воды, азота, растворимость лекарственного вещества, его кислотное, йодное число и т. д.
  • Биологические, позволяющие испытать вещество на стерильность, микробную чистоту, содержание токсинов.

Методы анализа лекарственных средств позволят установить подлинность заявленного производителем состава и определят малейшие отклонения от норм и технологии производства. В лаборатории АНО «Центр химических экспертиз» есть все необходимое оборудование для точного исследования любого вида лекарства. Высококвалифицированные специалисты применяют разнообразные методы анализа лекарственных средств и в кратчайшие сроки предоставят объективное заключение экспертизы.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама